Invisible steganography via generative adversarial networks

Multimedia Tools and Applications - Tập 78 Số 7 - Trang 8559-8575 - 2019
Ru Zhang1, Shiqi Dong1, Jianyi Liu1
1School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. In: Proceedings of the 34th international conference on machine learning (ICML), pp 214–223

Baluja S (2017) Hiding images in plain sight: Deep steganography. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 2069–2079

Cachin C (1998) An information-theoretic model for steganography. In: Aucsmith D (ed) Information hiding, 2nd international workshop, volume 1525 of lecture notes in computer science, pp 306–318

Cover T M, Thomas J A (1991) Elements of information theory. Wiley, New York

Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255

Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88:303–338

Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882

Guanshuo XU (2017) Deep convolutional neural network to detect JUNIWARD. In: Proceedings of 5th ACM workshop Inf Hiding Multimedia Secur (IH&MMSec), p 6773

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res 9:249–256

Goodfellow I, Pouget-Abadie J, Mirza M, Bing XU, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Proces 27(NIPS):2672–2680

Hayes J, Danezis G (2017) Generating steganographic images via adversarial training. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 1954–1963

He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP J Inf Secur 2014(1):1–13

Huang GB, Mattar M, Lee H, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments, University of Massachusetts, Amherst. Technical Report 07-49, October

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning (ICML), vol 37, pp 448–456

Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. Proc SPIE Int Soc Opt Eng 9409:94090J–94090J-10

Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of international conference on learning representations (ICLR)

Rehman AU, Rahim R, Nadeem S, Hussain SU (2017) End-to-end trained cnn encoder-decoder networks for image steganography. arXiv: 1711.07201

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of international conference on medical image computing and computer-assisted intervention, pp 234–241

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Xi C (2016) Improved techniques for training GANs. In: Proceedings of advances in neural information processing systems 29 (NIPS), pp 2234–2242

Shi H, Dong J, Wang W, Qian Y, Zhang X (2018) SSGAN: secure steganography based on generative adversarial networks. In: Zeng B, Huang Q, El Saddik A, Li H, Jiang S, Fan X (eds) Advances in multimedia information processing – PCM 2017. PCM 2017 lecture notes in computer science, vol 10735. Springer, Cham

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826

Tang W, Tan S, Li B, Huang J (2017) Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process Lett 24(10):1547–1551

Volkhonskiy D, Borisenko B, Burnaev E (2016) Generative adversarial networks for image steganography. In ICLR 2016 Open Review

Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The 37th asilomar conference on signals, system and computers, vol 2, pp 1398–1402

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612

Yang J, et al (2018) Spatial image steganography based on generative adversarial network. arXiv: 1804.07939

Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forensics Secur 12:2545–2557

Zhang L, Zhang L, Mou X, Zhang D (2012) A comprehensive evaluation of full reference image quality assessment algorithms. In: Proceedings of the 19th IEEE international conference on image processing, pp 1477–1480

Zeng J et al (2018) Large-scale JPEG steganalysis using hybrid deep-learning framework. IEEE Trans Inf Forensics Secur 13:1200–1214

Zhao H, Gallo O, Frosio I, et al (2017) Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3:47–57