Investigations on the Highly Sensitive Metal-Coated Broad Range D-Shaped Optical Fiber Refractive Index Sensor

Plasmonics - 2021
Hemant Kumar1, Umang Ramani1, Bipin Singh2, Praveen C. Pandey1
1Department of Physics, India Institute of Technology (BHU) Varanasi, Varanasi, India
2Department of Physics, University of Mumbai, Mumbai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Prabowo BA, Purwidyantri A, Liu KC (2018) Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 8:80

Salamon Z, Macleod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochim Biophys Acta 1331:117–129

Liedberg B, Nylander C, Sundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators B 4:299–304

Xiao F, Michel D, Li G, Xu A, Alameh K (2014) Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. J Lightwave Technol 32(21):4169–4173

Pathak AK, Chaudhary DK, Singh VK (2018) Broad range and highly sensitive optical pH sensor based on hierarchical ZnO micro flowers over tapered silica fiber. Sens Actuators A 280:399–405

Nguyen H, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510

Elshorbagy MH, Cuadrado AA, Alda J (2017) High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photonics Res 5(6):654–661

Sharma AK, Pandey AK, Kaur B (2018) A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt Fiber Technol 43:20–34

Kretschmann E, Reather H (1968) Radiative decay of non-radiative surface plasmons excited by light. Naturforsch 23:2135–2136

Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407(14):3883–3897

Otto A (1968) Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398–410

Kretschmann E (1971) Die BestimmungoptischerKonstanten von MetallendurchAnregung von Oberflachenplasmashwingungen. Z Phys 241:313–324

Nayak JK, Jha R (2017) Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing. Appl Opt 56(12):3510–3517

Gowri A, Sai VVR (2016) Development of LSPR based U-bent plastic optical fiber sensors. Sens Actuators B 230:536–543

Hasan M, Akter S, Rifat A, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4:18

Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA, Yun SH, Adikan FRM (2017) Photonic crystal fiber based plasmonic sensors. Sens Actuators, B 243:311–325

Monfared YE (2020) Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride. Plasmonics 15:535–542

Srivastava SK, Arora V, Sapra S, Gupta BD (2012) Localized surface plasmon resonance based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7:261–268

Suhailin FH, Alwahib AA, Kamil YM, Abu Bakar MH, Huang NM, Mahdi MA (2020) Fiber-based surface plasmon resonance sensor for lead ion detection in aqueous solution. Plasmonics 15:1369

Sharma NK, Rani M, Sajal V (2013) Surface plasmon resonance based fiber optic sensor with double resonance dips. Sens Actuators B 188:326–333

Gangwar RK, Singh VK (2017) Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor. Plasmonics 12:1367–1372

Tan CZ (1998) Determination of refractive index of silica glass for infrared wavelengths by ir spectroscopy. J Non-Cryst Solids 223:158–163

Wang T, Zhang M, Liu K, Jiang J, Zhao Y, Mac J, Liu T (2019) The effect of the TiO2 film on the performance of the optical fiber SPR sensor. Opt Commu 448:93–97

Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1119

Shukla S, Sharma NK, Sejal V (2015) Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study. Sens Actuator B 206:463–470

Feliziani M, Maradei F (1997) Edge element analysis of complex configurations in presence of shields. IEEE Trans Magn 33:1548–1551

Yang Z, Xia L, Li C, Chen X, Liu D (2019) A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection. Opt Commu 430:195–203

Sharma AK, Gupta BD (2007) On the performance of different bimetallic combination in surface plasmon resonance based fiber optic sensor. J Appl Phys 101:093111

Qing-QingMeng ZX, Lin CY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors 17:1846

Zhang S, Li J, Li S, Liu Q (2018) Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings. J Phys D: Appl Phys 51:305104

Ozcariz A, Piña-Azamar DA, Zamarreno CR (2019) Aluminum doped zinc oxide (AZO) coated optical fiber LMR refractometers-an experimental demonstration. Sens Actuators, B Chem 281:698–704

Kapoor V, Sharma NK, Sajal V (2019) Effect of zinc oxide overlayer on the sensitivity of optic fiber SPR sensor with indium tin oxide layers. Optik-Int J for Light and Electron Opt 185:464–468

Wang Q, Sun B, Hu E, Wei W (2019) Cu/ITO-Coated uncladded fiber-optic biosensor based on surface plasmon resonance. IEEE Photonics Technol Lett 31:1159–1162

Semwal V, Gupta BD (2019) Experimental studies on the sensitivity of the propagating and localized surface plasmon resonance-based tapered fiber optic refractive index sensors. Appl Opt 58:4149

Gasior K, Martynkien T, Napiorkowski M, Zolnacz K, Mergo P, Urbanczyk W (2017) A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber. J Opt 19:025001

Fontana E, Dulman HD, Doggett DE, Pantell RH (1998) Surface plasmon resonance on a single mode optical fiber. IEEE Trans Instrum Meas 47:168–173

Wei W, Nong J, Zhang G, Tang L, Jiang X, Chen N, Zhu Y (2017) Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors 17:2

Tripathi SM, Kumar A, Varshney RK, Kumar YBP, Marin E, Meunier JP (2009) Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. J Lightwave Technol 27:2348–2356

Gao X, Ning T, Zhang C, Xu J, Zheng J, Lin H, Li J, Pei L, You H (2020) A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt Commun 454:124441

Slavik R, Homola J, Ctyroky J (1999) Single-mode optical fiber surface plasmon resonance sensor. Sens Actuators B 54:74–79

Zhao J, Cao S, Liao C, Wang Y, Wang Y, Xu X, Fu C, Xu G, Lian J, Wang Y (2016) Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sens Actuators, B Chem 230:206–211

Yadav TK, Narayanaswamy R, Abu Bakar MH, Kamil YM, Mahdi MA (2014) Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt Express 22(19):22802–22807