Nghiên cứu về tính chất dieletric và cơ học của composite poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/nanotube carbon đơn tường

Springer Science and Business Media LLC - Tập 25 - Trang 1-14 - 2023
Saloni Sharma1, Mohsin Hasan2, Koteswararao V. Rajulapati2, Rajesh Kumar3, Pulickel M. Ajayan4, Ram Manohar Yadav1,5
1Department of Physics, VSSD College, CSJM University, Kanpur, India
2School of Engineering Sciences and Technology (SEST), University of Hyderabad, Hyderabad, India
3Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India
4Department of Materials Science and NanoEngineering, Rice University, Houston, USA
5Department of Physics, University of Allahabad, Prayagraj, India

Tóm tắt

Do những đặc tính độc đáo và tiềm năng ứng dụng trong nhiều lĩnh vực, vật liệu composite đã thu hút nhiều sự chú ý và được nghiên cứu sâu rộng. Chúng tôi đã nghiên cứu các tính chất cơ học và điện môi của các màng composite poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) được gia cố bằng nanotube carbon đơn tường (SWCNTs). Các màng composite được chuẩn bị với nồng độ SWCNTs từ 0,2 đến 1,0% bằng kỹ thuật đúc dung dịch. Phương pháp quang phổ trở kháng được sử dụng để khảo sát hành vi điện môi của composite, và thử nghiệm kéo được thực hiện để kiểm tra các tính chất cơ học. Kính hiển vi điện tử quét phát xạ trường, kính hiển vi điện tử truyền qua, và kính hiển vi lực nguyên tử đã được sử dụng để phân tích hình thái, và một máy diffractometer X-ray đã được sử dụng để xác định pha tinh thể. Kết quả cho thấy việc thêm SWCNTs đã cải thiện các tính chất cơ học, bao gồm cường độ kéo tối đa (UTS) và mô đun đàn hồi (E). Nó cũng làm tăng hằng số điện môi. Tuy nhiên, tổn thất điện môi cũng tăng nhẹ. Những cải thiện này có thể được quy cho những đặc điểm độc đáo của SWCNTs, chẳng hạn như tỷ số và diện tích bề mặt cao của chúng. Nghiên cứu này chứng minh tiềm năng của composite PVDF-HFP/SWCNTs trong nhiều ứng dụng như thiết bị điện tử, cảm biến, và tụ điện. Nghiên cứu này cung cấp những hiểu biết quý giá cho việc phát triển và thiết kế các màng composite có tính chất cải thiện cho nhiều ứng dụng khác nhau.

Từ khóa

#vật liệu composite #nanotube carbon đơn tường #tính chất cơ học #tính chất điện môi #poly(vinylidene fluoride-co-hexafluoropropylene) #phân tích hình thái

Tài liệu tham khảo

Fiedziuszko SJ, Hunter IC, Itoh T et al (2002) Dielectric materials, devices, and circuits. IEEE Trans Microw Theory Tech 50:706–720. https://doi.org/10.1109/22.989956 Zou K, Dan Y, Xu H et al (2019) Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 113:190–201. https://doi.org/10.1016/J.MATERRESBULL.2019.02.002 Dielectric materials for energy storage and energy harvesting applications | Frontiers Research Topic. https://www.frontiersin.org/research-topics/37067/dielectric-materials-for-energy-storage-and-energy-harvesting-applications. Accessed 28 Apr 2023 Gao J, Wang Y, Liu Y et al (2017) Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon. Sci Rep 7:1–10. https://doi.org/10.1038/srep40916 Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dielectr 03:1330001. https://doi.org/10.1142/s2010135x13300016 Tian S, Wu S, Xiong G (2020) Graphitic nanopetals and their applications in electrochemical energy storage and biosensing. J Nanopart Res 22:97. https://doi.org/10.1007/s11051-020-04819-5 Wei L, Li J, Chen R et al (2022) MOF-derived Ni-Co sulfide nanotubes/GO nanocomposites as electrode materials for supercapacitor applications. J Nanopart Res 24:230. https://doi.org/10.1007/s11051-022-05606-0 Yao Z, Song Z, Hao H et al (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29. https://doi.org/10.1002/adma.201601727 The dielectric constant. https://www.doitpoms.ac.uk/tlplib/dielectrics/dielectric_constant.php. Accessed 11 Mar 2023 Table of dielectric constants of substances | Level meters and level switches by Yamaden. http://www.ydic.co.jp/english/technology/table_E.html. Accessed 28 Apr 2023 Newnham RE (2004) Dielectric constant. In: Properties of materials. Oxford University Press Newnham RE (2004) Properties of materials. Oxford University Press Wang S, Yang C, Li X et al (2022) Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J Mater Chem C Mater 10:6196–6221. https://doi.org/10.1039/D2TC00193D Wu X, Chen X, Zhang QM, Tan DQ (2022) Advanced dielectric polymers for energy storage. Energy Storage Mater 44:29–47. https://doi.org/10.1016/J.ENSM.2021.10.010 Khan T, Aslam M, Basit M, Raza ZA (2023) Graphene-embedded electrospun polyacrylonitrile nanofibers with enhanced thermo-mechanical properties. J Nanopart Res 25:78. https://doi.org/10.1007/s11051-023-05728-z Yang S, Pan J, Wu S et al (2023) Enhanced photovoltaic performance of PM6/Y6-based organic solar cells by a wide-bandgap small molecule acceptor. J Nanopart Res 25:134. https://doi.org/10.1007/s11051-023-05787-2 Li M, Shi J, Chen C et al (2017) Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide. J Nanopart Res 19:114. https://doi.org/10.1007/s11051-017-3820-z Wu C, Chen L, Deshmukh A et al (2021) Dielectric polymers tolerant to electric field and temperature extremes: integration of phenomenology, informatics, and experimental validation. ACS Appl Mater Interfaces 13:53416–53424. https://doi.org/10.1021/acsami.1c11885 Hu Z, Liu X, Ren T et al (2022) Research progress of low dielectric constant polymer materials. J Polym Eng 42:677–687. https://doi.org/10.1515/polyeng-2021-0338 Sun W, Mao J, Wang S et al (2021) Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Front Chem Sci Eng 15:18–34. https://doi.org/10.1007/s11705-020-1939-4 Wang D, Han C, Mo F et al (2020) Energy density issues of flexible energy storage devices. Energy Storage Mater 28:264–292. https://doi.org/10.1016/J.ENSM.2020.03.006 Mao L, Meng Q, Ahmad A et al (2017) Mechanical analyses and structural design requirements for flexible energy storage devices. Adv Energy Mater 7:1700535. https://doi.org/10.1002/AENM.201700535 Li H, Tang Z, Liu Z, Zhi C (2019) Evaluating flexibility and wearability of flexible energy storage devices. Joule 3:613–619. https://doi.org/10.1016/J.JOULE.2019.01.013 Song WJ, Lee S, Song G et al (2020) Recent progress in aqueous based flexible energy storage devices. Energy Storage Mater 30:260–286. https://doi.org/10.1016/J.ENSM.2020.05.006 Lin T, Tam SK, Hu X, Ng KM (2021) A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films. J Nanopart Res 23:121. https://doi.org/10.1007/s11051-021-05239-9 Guo Z, Liu Z, Liu W et al (2021) Multifunctional flexible polyvinyl alcohol nanocomposite hydrogel for stress and strain sensor. J Nanopart Res 23:222. https://doi.org/10.1007/s11051-021-05333-y Gao H, Li J, Zhang F et al (2019) The research status and challenges of shape memory polymer-based flexible electronics. Mater Horiz 6:931–944. https://doi.org/10.1039/C8MH01070F Kang H, Jung S, Jeong S et al (2015) Polymer-metal hybrid transparent electrodes for flexible electronics. Nature. Communications 6:1–7. https://doi.org/10.1038/ncomms7503 Yakimets I, MacKerron D, Giesen P et al (2010) Polymer substrates for flexible electronics: achievements and challenges. Adv Mat Res 93–94:5–8. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.93-94.5 Ouyang J (2021) Application of intrinsically conducting polymers in flexible electronics. SmartMat 2:263–285. https://doi.org/10.1002/SMM2.1059 Chen X, Han X, Shen QD (2017) PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater 3:1600460. https://doi.org/10.1002/AELM.201600460 El Miri N, Abdelouahdi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167. https://doi.org/10.1016/J.CARBPOL.2015.04.051 Altarazi S, Allaf R, Alhindawi F (2019) Machine learning models for predicting and classifying the tensile strength of polymeric films fabricated via different production processes. Materials 12:1475. https://doi.org/10.3390/MA12091475 Baji A, Mai YW, Wong SC et al (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718. https://doi.org/10.1016/J.COMPSCITECH.2010.01.010 Peng W, Rhim S, Zare Y, Rhee KY (2019) Effect of “Z” factor for strength of interphase layers on the tensile strength of polymer nanocomposites. Polym Compos 40:1117–1122. https://doi.org/10.1002/PC.24813 Bastarrachea L, Dhawan S, Sablani SS (2011) engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3:79–93. https://doi.org/10.1007/s12393-011-9034-8 Zare Y, Rhee KY (2017) Dependence of Z parameter for tensile strength of multi-layered interphase in polymer nanocomposites to material and interphase properties. Nanoscale Res Lett 12:42. https://doi.org/10.1186/s11671-017-1830-5 Manuel Stephan A, Teeters D (2003) Characterization of PVdF-HFP polymer membranes prepared by phase inversion techniques I. Morphology and charge–discharge studies. Electrochim Acta 48:2143–2148. https://doi.org/10.1016/S0013-4686(03)00197-X Shi L, Wang R, Cao Y et al (2007) Fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Memb Sci 305:215–225. https://doi.org/10.1016/J.MEMSCI.2007.08.012 Li Z, Su G, Gao D et al (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49:4633–4639. https://doi.org/10.1016/J.ELECTACTA.2004.05.018 Nayak JK, Shankar U, Samal K (2023) Fabrication and development of SPEEK/PVdF-HFP/SiO2 proton exchange membrane for microbial fuel cell application. Chem Eng J Adv 14:100459. https://doi.org/10.1016/J.CEJA.2023.100459 Song L, Sun S, Zhang S, Wei J (2022) Hydrogen production and mechanism from water splitting by metal-free organic polymers PVDF/PVDF-HFP under drive by vibrational energy. Fuel 324:124572. https://doi.org/10.1016/J.FUEL.2022.124572 Zhang P, Yang LC, Li LL et al (2011) Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolyte. Fuel Energy Abstracts 379:80–85. https://doi.org/10.1016/J.MEMSCI.2011.05.043 Roy J, Chikkonda R, Kishor G et al (2022) Structural, microstructural, and ferroelectric studies of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin films in Ag/Cu/PVDF-HFP/Cu capacitor structures. J Appl Polym Sci 139:52187. https://doi.org/10.1002/APP.52187 Keum K, Heo JS, Eom J et al (2021) Highly sensitive textile-based capacitive pressure sensors using PVDF-HFP/ionic liquid composite films. Sensors 21:442. https://doi.org/10.3390/S21020442 Maurya DK, Balan B, Murugadoss V et al (2020) A fast Li-ion conducting Li7.1La3Sr0.05Zr1.95O12 embedded electrospun PVDF-HFP nanohybrid membrane electrolyte for all-solid-state Li-ion capacitors. Mater Today Commun 25:101497. https://doi.org/10.1016/J.MTCOMM.2020.101497 Sarno M, Baldino L, Scudieri C et al (2020) A one-step SC-CO2 assisted technique to produce compact PVDF-HFP MoS2 supercapacitor device. J Phys Chem Solid 136:109132. https://doi.org/10.1016/J.JPCS.2019.109132 Yu S, Liu G, Zheng J et al (2022) Excellent thermostable and mechanically reinforced lithium-ion capacitor based on inverse opal structural PVDF-HFP/MWCNT electrolyte. ACS Appl Energy Mater 5:3876–3885. https://doi.org/10.1021/acsaem.2c00397 Zhang Q, Wang Q, Huang S et al (2021) Preparation and electrochemical study of PVDF-HFP/LATP/g-C3N4 composite polymer electrolyte membrane. Inorg Chem Commun 131:108793. https://doi.org/10.1016/J.INOCHE.2021.108793 Sharma S, Mishra SS, Kumar R, Yadav RM (2022) Recent progress on polyvinylidene difluoride-based nanocomposites: applications in energy harvesting and sensing. New J Chem 46:18613–18646. https://doi.org/10.1039/D2NJ00002D Moharana S, Mahaling RN (2017) Silver (Ag)-Graphene oxide (GO) - Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss. Chem Phys Lett 680:31–36. https://doi.org/10.1016/J.CPLETT.2017.05.018 Salea A, Chaipo S, Permana AA et al (2020) The microstructure of negative electrocaloric polyvinylidene fluoride-hexafluoropropylene copolymer on graphene loading for eco-friendly cooling technology. J Clean Prod 251:119730. https://doi.org/10.1016/J.JCLEPRO.2019.119730 Shanmugaraj P, Swaminathan A, Ravi RK et al (2019) Preparation and characterization of porous PVdF-HFP/graphene oxide composite membranes by solution casting technique. J Mater Sci Mater Electron 30(22):20079–20087. https://doi.org/10.1007/S10854-019-02380-Z Ponnamma D, Erturk A, Parangusan H et al (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1:55–65. https://doi.org/10.1007/S42247-018-0007-Z Pavithra S, Sakunthala A, Rajesh S et al (2023) Influence of graphene oxide on the membrane characteristics of PVDF-HFP as an electrolyte for lithium-based energy storage devices. Appl Nanosci 13:4177–4192. https://doi.org/10.1007/s13204-023-02839-w Bobrowska DM, Gdula K, Breczko J et al (2022) Poly(p-phenylene vinylene) incorporated into carbon nanostructures. J Nanopart Res 24:222. https://doi.org/10.1007/s11051-022-05589-y Oublal E, Ait Abdelkadir A, Sahal M (2022) High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS-1D software. J Nanopart Res 24:202. https://doi.org/10.1007/s11051-022-05580-7 Bagyalakshmi S, Sivakami A, Pal K et al (2022) Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J Nanopart Res 24:201. https://doi.org/10.1007/s11051-022-05576-3 Dai ZH, Han JR, Gao Y et al (2017) Increased dielectric permittivity of poly(vinylidene fluoride-co-chlorotrifluoroethylene) nanocomposites by coating BaTiO3 with functional groups owning high bond dipole moment. Colloids Surf A Physicochem Eng Asp 529:560–570. https://doi.org/10.1016/J.COLSURFA.2017.05.065 Uguen N (2022) Dispersion state, interfacial phenomena and dielectric properties in high-permittivity polymer-based nanocomposites. . Materials Science [cond-mat.mtrl-sci]. Université de Lyon, English. ⟨NNT : 2022LYSE1032⟩. ⟨tel-04008532⟩ https://ird.hal.science/THESES_LYON1/tel-04008532v1 Zhao X, Bi Y, Xie J et al (2021) Enhanced dielectric, energy storage and tensile properties of BaTiO3–NH2/low-density polyethylene nanocomposites with POE-GMA as interfacial modifier. Polym Test 95:107094. https://doi.org/10.1016/J.POLYMERTESTING.2021.107094 Ponnamma D, Al-Maadeed MAA (2019) Influence of BaTiO3 /white graphene filler synergy on the energy harvesting performance of a piezoelectric polymer nanocomposite. Sustain Energy Fuels 3:774–785. https://doi.org/10.1039/C8SE00519B Mimura K, Kato K (2020) High refractive index and dielectric properties of BaTiO3 nanocube/polymer composite films. J Nanopart Res 22:241. https://doi.org/10.1007/s11051-020-04971-y Mimura K, Kato K (2013) Fabrication and piezoresponse properties of 100 BaTiO3 films containing highly ordered nanocube assemblies on various substrates. J Nanopart Res 15:1995. https://doi.org/10.1007/s11051-013-1995-5 Kim KM, Park NG, Ryu KS, Chang SH (2006) Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim Acta 51:5636–5644. https://doi.org/10.1016/J.ELECTACTA.2006.02.038 Mitra R, Sheetal Priyadarshini B, Ramadoss A, Manju U (2022) Stretchable polymer-modulated PVDF-HFP/TiO2 nanoparticles-based piezoelectric nanogenerators for energy harvesting and sensing applications. Mater Sci Eng B 286:116029. https://doi.org/10.1016/J.MSEB.2022.116029 Deepak Rosario J, Ranjithkumar R, Vidhya B et al (2023) Influence of GO concentration in development of PVDF-HFP/TiO2/graphene oxide nanocomposite films for electroadhesive applications. J Electron Mater 52(3):2062–2070. https://doi.org/10.1007/S11664-022-10138-3 Rosario JD, Ranjithkumar R, Vidhya B et al (2022) Influence of particle size reduction in ball milled rutile TiO2 on the properties of PVDF-HFP/ TiO2 nanocomposite films as dielectric layers for electro adhesive load bearing applications. J Mater Sci Mater Electron 33(34):25976–25990. https://doi.org/10.1007/S10854-022-09288-1 Razzaq H, Nawaz H, Siddiqa A et al (2016) A brief review on nanocomposites based on PVDF with nanostructured TiO2 as filler. Madridge Journal of. Nanotechnol Nanosci 1:23–29. https://doi.org/10.18689/MJNN-1000107 Lancel G, Stevens P, Toussaint G et al (2017) Hybrid Li ion conducting membrane as protection for the Li anode in an aqueous Li–air battery: coupling sol–gel chemistry and electrospinning. Langmuir 33:9288–9297. https://doi.org/10.1021/acs.langmuir.7b00675 Kishor KK, Kalathi JT (2020) Investigation on the dielectric performance of PVDF-HFP/LZO composites. J Alloys Compd 843:155889. https://doi.org/10.1016/J.JALLCOM.2020.155889 Li J, Yin J, Yang C et al (2019) Enhanced dielectric performance and energy storage of PVDF-HFP-based composites induced by surface charged Al2O3. J Polym Sci B Polym Phys 57:574–583. https://doi.org/10.1002/POLB.24814 Liu J, Khanam Z, Ahmed S et al (2021) A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J Power Sources 488:229461. https://doi.org/10.1016/J.JPOWSOUR.2021.229461 Radwan AB, El-Hout SI, Ibrahim MAM et al (2022) Superior corrosion and UV-resistant highly porous poly(vinylidene fluoride-co-hexafluoropropylene)/alumina superhydrophobic coating. ACS Appl Polym Mater 4:1358–1367. https://doi.org/10.1021/ACSAPM.1C01710 Wang L, Yan J, Zhang R et al (2021) Core–shell PMIA@PVdF-HFP/Al2O3 nanofiber mats in situ coaxial electrospun on LiFePO4 electrode as matrices for gel electrolytes. ACS Appl Mater Interfaces 13:9875–9884. https://doi.org/10.1021/acsami.0c20854 Sadhu SPP, Siddabattuni S, Muthukumar V. S, Varma KBR (2018) Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics. J Mater Sci Mater Electron 29:6174–6182. https://doi.org/10.1007/s10854-018-8592-4 Yadav MS (2020) Fabrication and characterization of supercapacitor electrodes using chemically synthesized CuO nanostructure and activated charcoal (AC) based nanocomposite. J Nanopart Res 22:303. https://doi.org/10.1007/s11051-020-05027-x Ma Y, Tong W, Wang W et al (2018) Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Compos Sci Technol 168:397–403. https://doi.org/10.1016/J.COMPSCITECH.2018.10.009 Wang H, Xie H, Wang S et al (2018) Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos Part A Appl Sci Manuf 108:62–68. https://doi.org/10.1016/J.COMPOSITESA.2018.02.020 Roy S, Thakur P, Hoque NA et al (2016) Enhanced electroactive β-phase nucleation and dielectric properties of PVdF-HFP thin films influenced by montmorillonite and Ni(OH)2 nanoparticle modified montmorillonite. RSC Adv 6:21881–21894. https://doi.org/10.1039/C6RA00864J Chen L, Huang J, Yan L et al (2021) Mechanical, thermal, and dielectric properties of polyvinylidene fluoride nanocomposites fabricated by introducing functional MWCNTs/barium titanate compounding dielectric nanofillers. Polym Compos 42:1383–1395. https://doi.org/10.1002/PC.25908 Shahi A, Dwivedi C, Manjare SD, Kulshrestha V (2021) Sulphonated (PVDF-co-HFP)-graphene oxide composite polymer electrolyte membrane for HI decomposition by electrolysis in thermochemical iodine-sulphur cycle for hydrogen production. Int J Hydrogen Energy 46:8852–8863. https://doi.org/10.1016/J.IJHYDENE.2021.01.027 Zheng W, Li Z, Lu G et al (2023) 3D flexible N-doped carbonaceous materials/PVDF-HFP composite frameworks for quasi-solid-state 4.5 V Li-ion capacitors. Chem Eng J 451:138581. https://doi.org/10.1016/J.CEJ.2022.138581 Hou Y, Choy KL (2022) Durable and robust PVDF-HFP/SiO2/CNTs nanocomposites for anti-icing application: water repellency, icing delay, and ice adhesion. Prog Org Coat 163:106637. https://doi.org/10.1016/J.PORGCOAT.2021.106637 Chang S, Hou M, Xu B et al (2021) High-performance quasi-solid-state Na-air battery via gel cathode by confining moisture. Adv Funct Mater 31:2011151. https://doi.org/10.1002/ADFM.202011151 Badatya S, Kumar A, Sharma C et al (2021) Transparent flexible graphene quantum dot-(PVDF-HFP) piezoelectric nanogenerator. Mater Lett 290:129493. https://doi.org/10.1016/J.MATLET.2021.129493 Yadav RM, Kumar R, Awasthi K, Srivastava ON (2011) Preparation of carbon-nitrogen nanotubes (CNNTs)-polyethylene oxide (PEO) composite films and their electrical conductivity measurement. Int J Nanosci 10:1091–1094. https://doi.org/10.1142/S0219581X11009477 Nunes-Pereira J, Sharma P, Fernandes LC et al (2018) Poly(vinylidene fluoride) composites with carbon nanotubes decorated with metal nanoparticles. Compos B Eng 142:1–8. https://doi.org/10.1016/J.COMPOSITESB.2017.12.047 Wang J, Zhan J, Mu X et al (2018) Manganese phytate dotted polyaniline shell enwrapped carbon nanotube: towards the reinforcements in fire safety and mechanical property of polymer. J Colloid Interface Sci 529:345–356. https://doi.org/10.1016/J.JCIS.2018.06.038 Efzan MNE, Syazwani NS (2018) A review on effect of nanoreinforcement on mechanical properties of polymer nanocomposites. Solid State Phenomena 280:284–293. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/SSP.280.284 Kaleemullah M, Khan SU, Kim JK (2012) Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos Sci Technol 72:1968–1976. https://doi.org/10.1016/J.COMPSCITECH.2012.08.020 Namitha R, Radhika D, Kannan K, Krishnamurthy G (2021) Manufacturing and processing of carbon nanotubes for H2 storage. Phys Chem Solid State 22:209–216. https://doi.org/10.15330/pcss.22.2.209-216 Yadav RM, Dobal PS (2012) Structural and electrical characterization of bamboo-shaped C–N nanotubes–poly ethylene oxide (PEO) composite films. J Nanopart Res 14:1155. https://doi.org/10.1007/s11051-012-1155-3 Vijayalakshmi V, Sadanandan B, Anjanapura RV (2023) In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxicol 37. https://doi.org/10.1002/jbt.23283 Atiq Ur Rehman M, Chen Q, Braem A et al (2021) Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. Int Mater Rev 66:533–562. https://doi.org/10.1080/09506608.2020.1831299 Wang Y, Yue G, Li D et al (2020) A robust carbon nanotube and PVDF-HFP nanofiber composite superwettability membrane for high-efficiency emulsion separation. Macromol Rapid Commun 41:2000089. https://doi.org/10.1002/MARC.202000089 Ning HM, Hu N, Kamata T et al (2013) Improved piezoelectric properties of poly(vinylidene fluoride) nanocomposites containing multi-walled carbon nanotubes. Smart Mater Struct 22:065011. https://doi.org/10.1088/0964-1726/22/6/065011 Batth A, Mueller A, Rakesh L, Mellinger A (2012) Electrical properties of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) blended with carbon nanotubes. Annual Report - Conf Electr Insulation Dielectric Phenom, CEIDP 28–31. https://doi.org/10.1109/CEIDP.2012.6378714 Francis L, Hilal N (2022) Electrosprayed CNTs on electrospun PVDF-Co-HFP membrane for robust membrane distillation. Nanomaterials 12:4331. https://doi.org/10.3390/NANO12234331 Bronikowski MJ, Willis PA, Colbert DT et al (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A 19:1800–1805. https://doi.org/10.1116/1.1380721 Deshmukh K, Sankaran S, Ahamed B et al (2017) Dielectric spectroscopy. Spectroscopic methods for nanomaterials characterization. Elsevier, In, pp 237–299 Modulus of Elasticity | Instron. https://www.instron.com/en-in/resources/glossary/m/modulus-of-elasticity. Accessed 30 Apr 2023 Numeracy, Maths and Statistics - Academic Skills Kit. https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/core-mathematics/geometry/equation-of-a-straight-line.html. Accessed 30 Apr 2023 Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11:10506. https://doi.org/10.1039/b912801h Begum S, Ullah H, Ahmed I et al (2021) Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs. Compos Sci Technol 211:108841. https://doi.org/10.1016/j.compscitech.2021.108841 Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370. https://doi.org/10.1016/J.ELECTACTA.2014.07.120 Samet M, Kallel A, Serghei A (2022) Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: scaling laws and applications. J Compos Mater 56:3197–3217. https://doi.org/10.1177/00219983221090629 Samet M, Levchenko V, Boiteux G et al (2015) Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys 142:194703. https://doi.org/10.1063/1.4919877 Samet M, Boiteux G, Seytre G et al (2014) Interfacial polarization in composite materials with spherical fillers: characteristic frequencies and scaling laws. Colloid Polym Sci 292:1977–1988. https://doi.org/10.1007/s00396-014-3300-2 Lin B, Li ZT, Yang Y et al (2019) Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method. Compos Sci Technol 172:58–65. https://doi.org/10.1016/J.COMPSCITECH.2019.01.003 Xia X, Wang Y, Zhong Z, Weng GJ (2017) A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon N Y 111:221–230. https://doi.org/10.1016/J.CARBON.2016.09.078 Taha EO, Alyousef HA, Dorgham AM et al (2023) Electron beam irradiation and carbon nanotubes influence on PVDF-PZT composites for energy harvesting and storage applications: changes in dynamic-mechanical and dielectric properties. Inorg Chem Commun 151:110624. https://doi.org/10.1016/j.inoche.2023.110624 Jin F, Feng M, Huang X et al (2015) Effect of SiO2 grafted MWCNTs on the mechanical and dielectric properties of PEN composite films. Appl Surf Sci 357:704–711. https://doi.org/10.1016/j.apsusc.2015.09.086 Zhang Z, Gu Y, Wang S et al (2016) Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon N Y 107:405–414. https://doi.org/10.1016/j.carbon.2016.05.068 Singer R, Ollick AM, Elhadary M (2021) Effect of cross-head speed and temperature on the mechanical properties of polypropylene and glass fiber reinforced polypropylene pipes. Alex Eng J 60:4947–4960. https://doi.org/10.1016/j.aej.2021.03.073 Reis JML, Lima RP, Vidal SD (2018) Effect of rate and temperature on the mechanical properties of epoxy BADGE reinforced with carbon nanotubes. Compos Struct 202:89–94. https://doi.org/10.1016/J.COMPSTRUCT.2017.11.081 Colak ÖU, Bahlouli N, Uzunsoy D, Francart C (2020) High strain rate behavior of graphene-epoxy nanocomposites. Polym Test 81:106219. https://doi.org/10.1016/J.POLYMERTESTING.2019.106219 Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:1–8. https://doi.org/10.1038/srep06479 Stan F, Sandu LI, Fetecau C (2014) Effect of processing parameters and strain rate on mechanical properties of carbon nanotube–filled polypropylene nanocomposites. Compos B Eng 59:109–122. https://doi.org/10.1016/J.COMPOSITESB.2013.11.023