Investigation towards scalable processing of silicon/graphite nanocomposite anodes with good cycle stability and specific capacity
Tài liệu tham khảo
Ashuri, 2016, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale, 8, 74, 10.1039/C5NR05116A
Obrovac, 2014, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114, 11444, 10.1021/cr500207g
Zuo, 2017, Silicon based lithium-ion battery anodes: a chronicle perspective review, Nano Energy, 31, 113, 10.1016/j.nanoen.2016.11.013
Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411
Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 10.1038/nenergy.2016.71
Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084
Teki, 2009, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5, 2236, 10.1002/smll.200900382
Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004
Terranova, 2014, Si/C hybrid nanostructures for Li-ion anodes: an overview, J. Power Sources, 246, 167, 10.1016/j.jpowsour.2013.07.065
Luo, 2019, Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries, ACS Sustain. Chem. Eng., 7, 10415, 10.1021/acssuschemeng.9b00616
Zhang, 2006, A review on electrolyte additives for lithium-ion batteries, J. Power Sources, 162, 1379, 10.1016/j.jpowsour.2006.07.074
Mazouzi, 2015, Critical roles of binders and formulation at multiscales of silicon-based composite electrodes, J. Power Sources, 280, 533, 10.1016/j.jpowsour.2015.01.140
Mery, 2019, A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications, J. Power Sources, 420, 9, 10.1016/j.jpowsour.2019.02.062
Cho, 2010, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 20, 4009, 10.1039/b923002e
Yi, 2013, Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 3, 295, 10.1002/aenm.201200857
Tian, 2015, Micro-sized nano-porous Si/C anodes for lithium ion batteries, Nano Energy, 11, 490, 10.1016/j.nanoen.2014.11.031
Liu, 2012, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett., 12, 3315, 10.1021/nl3014814
Yang, 2015, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 5
Ashuri, 2016, Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study, Electrochim. Acta, 215, 126, 10.1016/j.electacta.2016.08.059
Ashuri, 2017, Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles, J. Sol. Gel Sci. Technol., 82, 201, 10.1007/s10971-016-4265-z
Chen, 2012, Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries, Phys. Chem. Chem. Phys., 14, 12741, 10.1039/c2cp42231j
Xie, 2017, Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance, J. Power Sources, 342, 529, 10.1016/j.jpowsour.2016.12.094
Park, 2013, Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries, Adv. Energy Mater., 3, 206, 10.1002/aenm.201200389
Yoshio, 2005, Electrochemical behaviors of silicon based anode material, J. Power Sources, 146, 10, 10.1016/j.jpowsour.2005.03.143
Jana, 2019, A facile route for processing of silicon-based anode with high capacity and performance,, Materialia, 6, 100314, 10.1016/j.mtla.2019.100314
Ashuri, 2017, Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids, Electrochim. Acta, 258, 274, 10.1016/j.electacta.2017.10.198
Yoshio, 2002, Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc., 149, A1598, 10.1149/1.1518988
Li, 2012, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun., 48, 1201, 10.1039/C1CC14764A
Yu, 2014, Carbon coating for Si nanomaterials as high-capacity lithium battery electrodes, Electrochem. Commun., 46, 144, 10.1016/j.elecom.2014.07.007
Dimov, 2003, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta, 48, 1579, 10.1016/S0013-4686(03)00030-6
Liu, 2011, Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites, Angew. Chem. Int. Ed., 123, 6931, 10.1002/ange.201102070
Kong, 2012, Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes, Chem. Commun., 48, 10316, 10.1039/c2cc35284b
Kong, 2013, Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes, Nanoscale, 5, 2967, 10.1039/c3nr34024d
Fang, 2015, Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability, Nanoscale, 7, 7409, 10.1039/C5NR00132C
Wu, 2017, Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries, Powder Technol., 311, 200, 10.1016/j.powtec.2017.01.063
Wang, 2015, Electrochemical performance of SiO/C composites as anode material for Li-ion batteries, Adv. Mater. Res., 1092–1093, 185, 10.4028/www.scientific.net/AMR.1092-1093.185
Bie, 2016, Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 2899, 10.1021/acsami.5b10616
Gao, 2015, A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis, J. Mater. Chem., 3, 10767, 10.1039/C5TA01251A
Han, 2015, High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries, J. Power Sources, 281, 293, 10.1016/j.jpowsour.2015.01.122
Shaw, 2003, Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying, Acta Mater., 51, 2647, 10.1016/S1359-6454(03)00075-2
Yang, 2000, Evolution of microstructures and nitrogen sorption during high-energy milling of silicon in ammonia, J. Am. Ceram. Soc., 83, 1897, 10.1111/j.1151-2916.2000.tb01488.x
Ren, 2000, Polymorphic transformation and powder characteristics of TiO2 during high energy milling, J. Mater. Sci., 35, 6015, 10.1023/A:1026751017284
Sohn, 2016, Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries, J. Power Sources, 334, 128, 10.1016/j.jpowsour.2016.09.096
Liu, 2019, Effect of the carbon source on facile synthesized Si/graphite composites and their electrochemical performance, Int. J. Electrochem. Sci., 14, 5331, 10.20964/2019.06.22
Song, 2018, High-performance phosphorus-modified SiO/C anode material for lithium ion batteries, Ceram. Int., 44, 18509, 10.1016/j.ceramint.2018.07.071
Shi, 2016, Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries, J. Power Sources, 318, 184, 10.1016/j.jpowsour.2016.03.111
Fang, 2017, Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 9, 18766, 10.1021/acsami.7b03157
Behrens, 2001, The charge of glass and silica surfaces, J. Chem. Phys., 115, 6716, 10.1063/1.1404988
Seidel, 1990, Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc., 137, 3612, 10.1149/1.2086277
Seidel, 1990, Anisotropic etching of crystalline silicon in alkaline solutions: II. Influence of dopants, J. Electrochem. Soc., 137, 3626, 10.1149/1.2086278
Zubel, 2001, The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions, Sens. Actuators, A, 93, 138, 10.1016/S0924-4247(01)00648-3
Rola, 2013, Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions, Microsyst. Technol., 19, 635, 10.1007/s00542-012-1675-x
He, 2017, A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires, Mater. Lett., 196, 269, 10.1016/j.matlet.2017.03.131
Zhang, 2017, Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE, J. Mater. Sci. Mater. Electron., 28, 8510, 10.1007/s10854-017-6573-7
Sheng, 2018, Controllable nano-texturing of diamond wire sawing polysilicon wafers through low-cost copper catalyzed chemical etching, Mater. Lett., 221, 85, 10.1016/j.matlet.2018.03.092
Cullis, 1997, The structural and luminescence properties of porous silicon, J. Appl. Phys., 82, 909, 10.1063/1.366536
Bisi, 2000, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38, 1, 10.1016/S0167-5729(99)00012-6
Datta, 2009, In situ electrochemical synthesis of lithiated silicon–carbon based composites anode materials for lithium ion batteries, J. Power Sources, 194, 1043, 10.1016/j.jpowsour.2009.06.033
Datta, 2011, Amorphous silicon–carbon based nano-scale thin film anode materials for lithium ion batteries, Electrochim. Acta, 56, 4717, 10.1016/j.electacta.2011.01.124
Kang, 2007, Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials, Electrochem. Commun., 9, 959, 10.1016/j.elecom.2006.11.036
Chen, 2012, Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes, Nano Lett., 12, 4124, 10.1021/nl301657y
Xie, 2014, Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries, Electrochim. Acta, 135, 94, 10.1016/j.electacta.2014.05.012
Magasinski, 2010, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9, 353, 10.1038/nmat2725
Xu, 2015, Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive, Chem. Mater., 27, 2591, 10.1021/acs.chemmater.5b00339
Jin, 2018, Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy, J. Am. Chem. Soc., 140, 9854, 10.1021/jacs.8b03408
Günter, 2018, Introduction to electrochemical impedance spectroscopy as a measurement method for the wetting degree of lithium-ion cells, J. Electrochem. Soc., 165, A3249, 10.1149/2.0081814jes
Sahni, 2019, H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes, Electrochim. Acta, 301, 8, 10.1016/j.electacta.2019.01.153
Umeno, 2001, Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition, Chem. Lett., 30, 1186, 10.1246/cl.2001.1186
Fang, 2017, Facile fabrication of silicon nanoparticle lithium-ion battery anode reinforced with copper nanoparticles, Digest J. Nanomater. Biostructures, 12
Zhu, 2013, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 15, 440, 10.1039/C2CP44046F
Zhu, 2017, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries, Nanoscale, 9, 8871, 10.1039/C7NR01545C