Investigation towards scalable processing of silicon/graphite nanocomposite anodes with good cycle stability and specific capacity

Nano Materials Science - Tập 2 - Trang 297-308 - 2020
Maziar Ashuri1, Qianran He2, Yuzi Liu3, Leon L. Shaw1
1Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
2Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
3Center for Nanoscale Materials (CNM), Argonne National Laboratory, Lemont, IL, 60439, USA

Tài liệu tham khảo

Ashuri, 2016, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale, 8, 74, 10.1039/C5NR05116A Obrovac, 2014, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114, 11444, 10.1021/cr500207g Zuo, 2017, Silicon based lithium-ion battery anodes: a chronicle perspective review, Nano Energy, 31, 113, 10.1016/j.nanoen.2016.11.013 Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411 Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 10.1038/nenergy.2016.71 Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084 Teki, 2009, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5, 2236, 10.1002/smll.200900382 Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004 Terranova, 2014, Si/C hybrid nanostructures for Li-ion anodes: an overview, J. Power Sources, 246, 167, 10.1016/j.jpowsour.2013.07.065 Luo, 2019, Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries, ACS Sustain. Chem. Eng., 7, 10415, 10.1021/acssuschemeng.9b00616 Zhang, 2006, A review on electrolyte additives for lithium-ion batteries, J. Power Sources, 162, 1379, 10.1016/j.jpowsour.2006.07.074 Mazouzi, 2015, Critical roles of binders and formulation at multiscales of silicon-based composite electrodes, J. Power Sources, 280, 533, 10.1016/j.jpowsour.2015.01.140 Mery, 2019, A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications, J. Power Sources, 420, 9, 10.1016/j.jpowsour.2019.02.062 Cho, 2010, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 20, 4009, 10.1039/b923002e Yi, 2013, Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 3, 295, 10.1002/aenm.201200857 Tian, 2015, Micro-sized nano-porous Si/C anodes for lithium ion batteries, Nano Energy, 11, 490, 10.1016/j.nanoen.2014.11.031 Liu, 2012, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett., 12, 3315, 10.1021/nl3014814 Yang, 2015, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Sci. Rep., 5 Ashuri, 2016, Hollow silicon nanospheres encapsulated with a thin carbon shell: an electrochemical study, Electrochim. Acta, 215, 126, 10.1016/j.electacta.2016.08.059 Ashuri, 2017, Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles, J. Sol. Gel Sci. Technol., 82, 201, 10.1007/s10971-016-4265-z Chen, 2012, Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries, Phys. Chem. Chem. Phys., 14, 12741, 10.1039/c2cp42231j Xie, 2017, Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance, J. Power Sources, 342, 529, 10.1016/j.jpowsour.2016.12.094 Park, 2013, Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries, Adv. Energy Mater., 3, 206, 10.1002/aenm.201200389 Yoshio, 2005, Electrochemical behaviors of silicon based anode material, J. Power Sources, 146, 10, 10.1016/j.jpowsour.2005.03.143 Jana, 2019, A facile route for processing of silicon-based anode with high capacity and performance,, Materialia, 6, 100314, 10.1016/j.mtla.2019.100314 Ashuri, 2017, Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids, Electrochim. Acta, 258, 274, 10.1016/j.electacta.2017.10.198 Yoshio, 2002, Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc., 149, A1598, 10.1149/1.1518988 Li, 2012, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun., 48, 1201, 10.1039/C1CC14764A Yu, 2014, Carbon coating for Si nanomaterials as high-capacity lithium battery electrodes, Electrochem. Commun., 46, 144, 10.1016/j.elecom.2014.07.007 Dimov, 2003, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta, 48, 1579, 10.1016/S0013-4686(03)00030-6 Liu, 2011, Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites, Angew. Chem. Int. Ed., 123, 6931, 10.1002/ange.201102070 Kong, 2012, Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes, Chem. Commun., 48, 10316, 10.1039/c2cc35284b Kong, 2013, Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes, Nanoscale, 5, 2967, 10.1039/c3nr34024d Fang, 2015, Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability, Nanoscale, 7, 7409, 10.1039/C5NR00132C Wu, 2017, Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries, Powder Technol., 311, 200, 10.1016/j.powtec.2017.01.063 Wang, 2015, Electrochemical performance of SiO/C composites as anode material for Li-ion batteries, Adv. Mater. Res., 1092–1093, 185, 10.4028/www.scientific.net/AMR.1092-1093.185 Bie, 2016, Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 2899, 10.1021/acsami.5b10616 Gao, 2015, A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis, J. Mater. Chem., 3, 10767, 10.1039/C5TA01251A Han, 2015, High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries, J. Power Sources, 281, 293, 10.1016/j.jpowsour.2015.01.122 Shaw, 2003, Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying, Acta Mater., 51, 2647, 10.1016/S1359-6454(03)00075-2 Yang, 2000, Evolution of microstructures and nitrogen sorption during high-energy milling of silicon in ammonia, J. Am. Ceram. Soc., 83, 1897, 10.1111/j.1151-2916.2000.tb01488.x Ren, 2000, Polymorphic transformation and powder characteristics of TiO2 during high energy milling, J. Mater. Sci., 35, 6015, 10.1023/A:1026751017284 Sohn, 2016, Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries, J. Power Sources, 334, 128, 10.1016/j.jpowsour.2016.09.096 Liu, 2019, Effect of the carbon source on facile synthesized Si/graphite composites and their electrochemical performance, Int. J. Electrochem. Sci., 14, 5331, 10.20964/2019.06.22 Song, 2018, High-performance phosphorus-modified SiO/C anode material for lithium ion batteries, Ceram. Int., 44, 18509, 10.1016/j.ceramint.2018.07.071 Shi, 2016, Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries, J. Power Sources, 318, 184, 10.1016/j.jpowsour.2016.03.111 Fang, 2017, Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 9, 18766, 10.1021/acsami.7b03157 Behrens, 2001, The charge of glass and silica surfaces, J. Chem. Phys., 115, 6716, 10.1063/1.1404988 Seidel, 1990, Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc., 137, 3612, 10.1149/1.2086277 Seidel, 1990, Anisotropic etching of crystalline silicon in alkaline solutions: II. Influence of dopants, J. Electrochem. Soc., 137, 3626, 10.1149/1.2086278 Zubel, 2001, The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions, Sens. Actuators, A, 93, 138, 10.1016/S0924-4247(01)00648-3 Rola, 2013, Impact of alcohol additives concentration on etch rate and surface morphology of (100) and (110) Si substrates etched in KOH solutions, Microsyst. Technol., 19, 635, 10.1007/s00542-012-1675-x He, 2017, A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires, Mater. Lett., 196, 269, 10.1016/j.matlet.2017.03.131 Zhang, 2017, Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE, J. Mater. Sci. Mater. Electron., 28, 8510, 10.1007/s10854-017-6573-7 Sheng, 2018, Controllable nano-texturing of diamond wire sawing polysilicon wafers through low-cost copper catalyzed chemical etching, Mater. Lett., 221, 85, 10.1016/j.matlet.2018.03.092 Cullis, 1997, The structural and luminescence properties of porous silicon, J. Appl. Phys., 82, 909, 10.1063/1.366536 Bisi, 2000, Porous silicon: a quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep., 38, 1, 10.1016/S0167-5729(99)00012-6 Datta, 2009, In situ electrochemical synthesis of lithiated silicon–carbon based composites anode materials for lithium ion batteries, J. Power Sources, 194, 1043, 10.1016/j.jpowsour.2009.06.033 Datta, 2011, Amorphous silicon–carbon based nano-scale thin film anode materials for lithium ion batteries, Electrochim. Acta, 56, 4717, 10.1016/j.electacta.2011.01.124 Kang, 2007, Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials, Electrochem. Commun., 9, 959, 10.1016/j.elecom.2006.11.036 Chen, 2012, Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes, Nano Lett., 12, 4124, 10.1021/nl301657y Xie, 2014, Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries, Electrochim. Acta, 135, 94, 10.1016/j.electacta.2014.05.012 Magasinski, 2010, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9, 353, 10.1038/nmat2725 Xu, 2015, Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive, Chem. Mater., 27, 2591, 10.1021/acs.chemmater.5b00339 Jin, 2018, Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy, J. Am. Chem. Soc., 140, 9854, 10.1021/jacs.8b03408 Günter, 2018, Introduction to electrochemical impedance spectroscopy as a measurement method for the wetting degree of lithium-ion cells, J. Electrochem. Soc., 165, A3249, 10.1149/2.0081814jes Sahni, 2019, H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes, Electrochim. Acta, 301, 8, 10.1016/j.electacta.2019.01.153 Umeno, 2001, Novel anode material for lithium-ion batteries: carbon-coated silicon prepared by thermal vapor decomposition, Chem. Lett., 30, 1186, 10.1246/cl.2001.1186 Fang, 2017, Facile fabrication of silicon nanoparticle lithium-ion battery anode reinforced with copper nanoparticles, Digest J. Nanomater. Biostructures, 12 Zhu, 2013, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 15, 440, 10.1039/C2CP44046F Zhu, 2017, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries, Nanoscale, 9, 8871, 10.1039/C7NR01545C