Investigation the structure and properties of deformed semi-finished products produced from chips of Al–Mg alloys system alloyed with scandium

Sergey Borisovich Sidelnikov1,2, Nikolay Nikolaevich Zagirov1,3, Yuri Nikolaevich Loginov4,5, Ekaterina Sergeevna Lopatina1,6, Denis Sergeevich Voroshilov1,3, Sergey Nikolaevich Lezhnev7, Evgeniy Vladimirovich Ivanov1,3, Anastasiya Sergeevna Saparova1,6, Marina Vladimirovna Voroshilova1,3, Vladimir Ivanovich Ber1,8, Elena Vasilyevna Feskova1,9, Elena Vladimirovna Zagirova1,3
1Siberian Federal University, Krasnoyarsk, 660025, Krasnoyarsk Region, Russian Federation
2Metal Forming Department, School of Non-Ferrous Metals and Material Science, SibFU, Honored Inventor of the Russian Federation, 95, Ave. Imeni gazeti Krasnoyarskiy rabochiy, Krasnoyarsk, 660025, Russian Federation
3Metal Forming Department, School of Non-Ferrous Metals and Material Science, SibFU, 95, Ave. Imeni gazeti Krasnoyarskiy rabochiy, Krasnoyarsk, 660025, Russian Federation
4Ural Federal University Named After the First President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russian Federation
5Ural Federal University Named After the First President of Russia B.N. Yeltsin, 19, Mira, Yekaterinburg, 620002, Russian Federation
6Department of Metal Science and Heat Treatment of Metals Named After V.S. Biront, School of Non-Ferrous Metals and Material Science, SibFU, 95, Ave. Imeni gazeti Krasnoyarskiy rabochiy, Krasnoyarsk, 660025, Russian Federation
7Rudny Industrial Institute, Rudny, 111500, Kazakhstan
8Metal Forming Department, School of Non-Ferrous Metals and Material Science, SibFU, Honored Machine Builder of Russia, 95, Ave. Imeni gazeti Krasnoyarskiy rabochiy, Krasnoyarsk, 660025, Russian Federation
9CDIO, School of Non-Ferrous Metals and Material Science, SibFU, 95, Ave. Imeni gazeti Krasnoyarskiy rabochiy, Krasnoyarsk, 660025, Russian Federation

Tài liệu tham khảo

Cislo, 2020, Solid state recycling of aluminum alloy chips via pulsed electric current sintering, J. Manuf. Mater. Process., 4 Abdullah, 2020, Direct recycling of aluminium chips into composite reinforced with in situ alumina enrichment, Mater. Sci. Forum, 975, 165, 10.4028/www.scientific.net/MSF.975.165 Majer, 2019, Review of aluminum chips recycling, Int. Multidisc. Sci. GeoConf. Surv. Geol. Min. Ecol. Manage., SGEM, 19, 771 Wan, 2017, Review of solid state recycling of aluminum chips, Resour. Conserv. Recycl., 125, 37, 10.1016/j.resconrec.2017.06.004 Ferreira, 2017, Recycling of scrap aluminium (AA7075) chips for low cost composites, Conf. Proc. Soc. Exp. Mech. Ser., 7, 19, 10.1007/978-3-319-41766-0_3 Shamsudin, 2016, Evolutionary in solid state recycling techniques of aluminium: a review, Procedia CIRP, 40, 256, 10.1016/j.procir.2016.01.117 Moungomo, 2016, Aluminium machining chips formation, treatment & recycling: a review, Key Eng. Mater., 710, 71, 10.4028/www.scientific.net/KEM.710.71 Shahrom, 2014, Review of aluminum chip machining using direct recycling process, Adv. Mater. Res., 903, 157, 10.4028/www.scientific.net/AMR.903.157 Fuziana, 2014, Recycling aluminium (Al 6061) chip through powder metallurgy route, Mater. Res. Innovat., 18, 10.1179/1432891714Z.000000000981 Gronostajski, 2000, New methods of aluminium and aluminium-alloy chips recycling, J. Mater. Process. Technol., 106, 34, 10.1016/S0924-0136(00)00634-8 Rady, 2020, Effect of hot extrusion parameters on tensile strength and fracture behavior in direct recycling of aluminium alloy (6061) chips, Mater. Sci. Forum, 975, 229, 10.4028/www.scientific.net/MSF.975.229 Wagiman, 2020, A review on direct hot extrusion technique in recycling of aluminium chips, Int. J. Adv. Manuf. Technol., 106, 641, 10.1007/s00170-019-04629-7 Mehtedi, 2019, A new sustainable direct solid state recycling of AA1090 aluminum alloy chips by means of friction stir back extrusion process, Procedia CIRP, 79, 638, 10.1016/j.procir.2019.02.062 Rady, 2019, Effect of hot extrusion parameters on microhardness and microstructure in direct recycling of aluminium chips, Mater. Werkst., 50, 718, 10.1002/mawe.201800214 Rady, 2019, Microhardness and microstructure of hot extrusion parameters in direct recycling of aluminium chip (AA 6061) by ANOVA method, J. Phys. Conf., 1150 Abd El Aal, 2019, Solid state recycling of aluminium AA6061 alloy chips by hot extrusion, Mater. Res. Express, 6, 10.1088/2053-1591/aaf6e7 Khamis, 2015, A sustainable direct recycling of aluminum chip (AA6061) in hot press forging employing Response surface methodology, Procedia CIRP, 26, 477, 10.1016/j.procir.2014.07.023 Ab Rahim, 2015, A review on recycling aluminum chips by hot extrusion process. 12th Global conf. On sustainable manufacturing, Procedia CIRP, 26, 761, 10.1016/j.procir.2015.01.013 Haase, 2014, Recycling of aluminum chips by hot extrusion with subsequent cold extrusion, Procedia Eng., 81, 652, 10.1016/j.proeng.2014.10.055 Lajis, 2014, Optimization of hot press forging parameters in direct recycling of aluminium chip (AA 6061), Key Eng. Mater., 622–623, 223, 10.4028/www.scientific.net/KEM.622-623.223 Yusuf, 2013, Effect of operating temperature on direct recycling aluminium chips (AA6061) in hot press forging process, Appl. Mech. Mater., 315, 728, 10.4028/www.scientific.net/AMM.315.728 Güley, 2010, Direct recycling of 1050 aluminum alloy scrap material mixed with 6060 aluminum alloy chips by hot extrusion, Int. J. Material Form., 3, 853, 10.1007/s12289-010-0904-z Suzuki, 2007, Recycling of 6061 aluminum alloy cutting chips using hot extrusion and hot rolling, Mater. Sci. Forum, 544–545, 443, 10.4028/www.scientific.net/MSF.544-545.443 Zagirov, 2019 Loginov, 2018, Deformation resistance of porous silumin at higher temperatures, Zagotovitel'nye proizvodstva v mashinostroenii [Procur. Prod. Mech. Eng.], 16, 354 Loginov, 2016, Deformation in porous aluminum alloy rods during drawing, Zagotovitel'nye proizvodstva v mashinostroenii [Procur. Prod. Mech. Eng.], 3, 31 Zagirov, 2011, vol. 1, 34 Zagirov, 2010, Manufacturing technique of fibrous structure wire from the facing of aluminium-magnesium-silicon alloy, Vestnik SibGAU, 2, 68 Zagirov, 2010, vol. 2, 50 Patent Sidelnikov, 2005 Sidelnikov, 2015 Gorbunov, 2015, The role and prospects of rare earth metals in the development of physical-mechanical characteristics and applications of deformable aluminum alloys, J. Siberian Federal Univ. Eng. Technol., 8, 636, 10.17516/1999-494X-2015-8-5-636-645 Zakharov, 2018, Prospects of creation of aluminum alloys sparingly alloyed with scandium, Met. Sci. Heat Treat., 60, 172, 10.1007/s11041-018-0256-8 Aluminium and wrought aluminium alloys. Grades. State Standard 4784-2019. https://docs.cntd.ru/document/1200166725 Accessed 15 Mar 2022. Bronz, 2014, Alloy Alloy 1570C — material for pressurized structures of advanced reusable vehicles of RSC “Energia”, Kosmicheskaya tekhnika i tekhnologii [Space Eng. Technol.], 4, 62 Filatov, 2011, Structure and properties of deformed semi-finished products from aluminum alloy 01570C of the Al – Mg – Sc system for the RSC “Energia” product, Tekhnologiya legkikh splavov [Light Alloy Technol.], 2, 15 Dovzhenko, 2019, Understanding the behaviour of aluminium alloy Р-1580 sparingly doped with scandium under hot deformation, Tsvetnye Met., 9, 80, 10.17580/tsm.2019.09.13 Dovzhenko, 2021, Deformation behavior during hot processing of the alloy of the Al-Mg system economically doped with scandium, Int. J. Adv. Manuf. Technol., 115, 2571, 10.1007/s00170-021-07338-2 Yuryev, 2021, Investigation the structure in cast and deformed states of aluminum alloy, economically alloyed with scandium and zirconium, Int. J. Adv. Manuf. Technol., 115, 263, 10.1007/s00170-021-07206-z Konstantinov, 2020, Investigation of the structure and properties of cold-rolled strips from experimental alloy 1580 with a reduced scandium content, Int. J. Adv. Manuf. Technol., 109, 443, 10.1007/s00170-020-05681-4 Baranov, 2018, Study of strength properties of semi-finished products from economically alloyed high-strength aluminium-scandium alloys for application in automobile transport and shipbuilding, Open Eng., 8, 69, 10.1515/eng-2018-0005 Bezrukikh, 2022, Modeling of casting technology of large-sized ingots from deformable aluminum alloys, Int. J. Adv. Manuf. Technol., 120, 761, 10.1007/s00170-022-08817-w Baranov, 2018, Physical modeling technological regimes of production deformed semi-finished products from experimental aluminium alloys alloyed by scandium, Mater. Sci. Forum, 918, 54, 10.4028/www.scientific.net/MSF.918.54