Nghiên cứu về từ tính và quang phổ Mössbauer của LiMnPO4 doped 57Fe

Journal of Radioanalytical and Nuclear Chemistry - Tập 330 - Trang 461-467 - 2021
Hyunkyung Choi1, Jae Yeon Seo1, Chul Sung Kim1
1Department of Physics, Kookmin University, Seoul, Republic of Korea

Tóm tắt

La-2Fe(1-x)ZnxO4 là công thức giúp tạo ra một loại vật liệu gốm từ có hiệu dụng sinh học. Mẫu vật liệu này đã được tổng hợp và khảo sát kích thước hạt, cấu trúc tinh thể, và tính chất từ tính. Kích thước hạt được đo bằng phương pháp nhiễu xạ tia X (XRD), cho thấy kích thước hạt giảm khi nồng độ Zn tăng. Cấu trúc tinh thể cho thấy mẫu này có cấu trúc spinel ổn định. Tính chất từ tính cũng được khảo sát để tìm hiểu ảnh hưởng của nồng độ Zn.

Từ khóa

#LiMnPO4 #nhiệt độ Néel #nhiệt độ tái định hướng spin #quang phổ Mössbauer #tính chất từ tính

Tài liệu tham khảo

Deng Y, Yang C, Zou K, Qin X, Zhao Z, Chen G (2017) Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5≤y≤1.0) cathode materials for high energy density lithium ion batteries. Adv Energy Mater 7:1601958 Zhang TW, Tian T, Shen B, Song YH, Yao HB (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14 Xu X, Wang T, Bi Y, Liu M, Yang W, Peng Z, Wang D (2017) Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment. J Power Sources 341:75–182 Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135 Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194 Aravindan V, Gnanarnj J, Lee YS, Madhavi S (2013) LiMnPO4–A next generation cathode material for lithium-ion batteries. J Mater Chem A 1:3518–3539 Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2011) Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe Co, and Ni): a comparative first-principles study. J Mater Chem 22:1142–1149 Jung YH, Park WB, Pyo M, Sohn KS, Ahn D (2017) A multi-element doping design for a high-performance LiMnPO4 cathode via metaheuristic computation. J Mater Chem A 5:8939–8945 Wang Yan WuCY, Yang H, Duh JG (2018) Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials. J Mater Chem A 6:10395–10403 Sgroi MF, Lazzaroni R, Beljonne D, Pullini D (2017) Doping LiMnPO4 with cobalt and nickel: a first principle study. Batteries 3:11 Xu J, Dou S, Liu H, Dai L (2013) Cathode materials for next generation lithium ion batteries. Nano Energy 2:439–442 Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119:232–238 Zhang Y, Zhao Y, Deng L (2012) Enhanced electrochemical properties of LiMnPO4/C via doping with Cu. Ionics 18:573–578 Kosova NV, Podgornova OA, Gutakovskii AK (2018) Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods. J Alloys Compd 742:454–465 Wang Y, Yang H, Wu CY, Duh JG (2017) Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries. J Mater Chem A 5:18674–18683 Rhee CH, Kim SJ, Kim CS (2011) Mössbauer studies of spin-orbit coupling in LiCo0.9957Fe0.01PO4. IEEE Trans Magn 47:2697–2700 Kim W, Rhee CH, Kim HJ, Moon SJ, Kim CS (2010) Strong crystalline field at the Fe site and spin rotation in olivine LiNi0.9957Fe0.01PO4 material by Mössbauer spectroscopy. Appl Phys Lett 96:242505 Stephanie G, Efrain ER (2020) Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines. Inorg Chem 59:5883–5895 Lee IK, Kim SJ, Kim CS (2012) Magnetic properties of phospho-olivine Li(Fe1-xMnx)PO4 investigated With Mössbauer spectroscopy. IEEE Trans Magn 48:1553–1555 Julien CM, Ait-Salah A, Mauger A, Gendron F (2006) Magnetic properties of lithium intercalation compounds. Ionics 12:21–32 Ok HN, Mullen JG (1968) Magnetic properties of iron ions in CoO(I) and CoO(II). Phys Rev 168:563–574 Kim CS, Shim IB, Ha MY, Kim CS (1993) Magnetic properties of the monoclinic FeRh2Se4. J Appl Phys 73(10):5707–5709 Kmječ T, Kohout J, Dopita M, Veverka M, Kuriplach J (2019) Mössbauer spectroscopy of triphylite (LiFePO4) at low temperatures. Condens Matter 4(4):86 Rhee CH, Lee IK, Moon SJ, Kim SJ, Kim CS (2011) Neutron diffraction and Mössbauer studies of LiFePO4. J Korean Phys Soc 58(3):472 Kwon WJ, Lee IK, Rhee CH, Kim CS (2012) Spin-reorientation in the antiferromagnetic ordering of LiFe1-xMnxPO4 investigated with Mössbauer spectroscopy. J Appl Phys 111:07E139 Dai D, Whangbo MH, Koo HJ, Rocquefelte X, Jobic S, Villesuzanne A (2005) Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M=Mn, Fe Co, Ni) with the olivine structure. Inorg Chem 44(7):2407–2413 Li J, Tian W, Chen Y, Zarestky JL, Lynn JW, Vaknin D (2009) Antiferromagnetism in the magnetoelectric effect single crystal LiMnPO4. Phys Rev B 79(14):144410 Kim HS, Kim CS (2014) A study of spin canting in Li3Fe2(PO4)3 with Mössbauer spectroscopy under 5 T. J Appl Phys 115:17E126