Investigation on the effect of laser parameters and hatch patterns on the dimensional accuracy of micro-dimple and micro-channel texture geometries
Springer Science and Business Media LLC - Trang 1-18 - 2023
Tóm tắt
This study investigates the design, simulation and fabrication of micro-dimple and micro-channel texture geometries and the effect of laser parameters and hatch patterns on its dimensional accuracy on carbide tools. Micro-textures were fabricated using a 30-Watt pulsed 1068 ns infra-red fiber laser. The intended design width/diameter and pitch for micro-channels and micro-dimples were 80 and 190 µm, respectively, with a micro-channel depth of 70 µm. Ample simulation trials followed by pilot experiments were conducted to obtain the required geometry. An array of micro-dimples and micro-channels was fabricated by varying the laser parameters, namely laser power, frequency, and scanning speed, and with five different types of hatch patterns, namely unidirectional hatch, bi-directional hatch, ring-like hatch, two-way hatch, and gong type hatch. Mathematical models were developed for a better understanding of the effect of the laser parameters and hatch patterns on the dimensional accuracy. It has been observed that the percentage error in the intended micro-dimple dimensions decreased with the increase in laser parameters. However, the percentage error for micro-channel dimensions increased with the laser power and scanning speed and decreased with frequency. Finally, an optimized set of laser parameters and hatch patterns were obtained using the TOPSIS technique which show that two-way hatch and bi-directional hatch patterns are most prominent for both types of textured tools. Further, this study finds that the laser power of 21 W, scanning speed of 1.5–2 m/s, and frequency of 60–80 kHz yield better dimensional accuracy for the selected micro-texture geometries on carbide tools.
Tài liệu tham khảo
Rajurkar, A., Chinchanikar, S.: Experimental investigation on laser-processed micro-dimple and micro-channel textured tools during turning of Inconel 718 alloy. J. Mater. Eng. Perform. 31, 4068–4083 (2022). https://doi.org/10.1007/s11665-021-06493-7
Jain, V.K., Patel, D.S., Ramkumar, J., Bhattacharyya, B., Doloi, B., Sarkar, B.R., Ranjan, P., ES, S.S., Jayal, A.D.: Micro-machining: an overview (Part II). J. Micromanuf. (2021). https://doi.org/10.1177/25165984211045244
Dharmadhikari, S., Nikam, M., Mastud, S., et al.: Micro-fabrication of textured surfaces using wire-mesh electrode in reverse µEDM. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01203-0
Vaishya, R., Sharma, V., Gupta, A., et al.: Finite element modeling of quartz material for analyzing material removal rate in ECDM process. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01037-2
Kale, B.S., Bhole, K.S., Dhongadi, H., et al.: Effect of polygonal surfaces on development of viscous fingering in lifting plate Hele–Shaw cell. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01030-9
Kale, B., Bhole, K.S., Raykar, N., Sharma, C., Deshmukh, P., Oak, S.: Fabrication of meso sized structures through controlled viscous fingering in lifting plate Hele–Shaw cell with holes and slots. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2127985
Kale, B.S., Bhole, K.S., Bhole, D., et al.: A practical approach towards utilisation of the net-shaped micro-structures developed in the lifting plate Hele–Shaw cell for micro-mixing. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-022-01167-7
Jia, H., Sun, H., Wang, H., Wu, Y., Wang, H.: Scanning strategy in selective laser melting (SLM): a review. Int. J. Adv. Manuf. Technol. 113, 2413–2435 (2021). https://doi.org/10.1007/s00170-021-06810-3
Zou, S., Xiao, H., Ye, F., Li, Z., Tang, W., Zhu, F., Chen, C., Zhu, C.: Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Results Phys. 16, 103005 (2020). https://doi.org/10.1016/j.rinp.2020.103005
Yang, C.J., Mei, X.S., Tian, Y.L., Zhang, D.W., Li, Y., Liu, X.P.: Modification of wettability property of titanium by laser texturing. Int. J. Adv. Manuf. Technol. 87, 1663–1670 (2016). https://doi.org/10.1007/s00170-016-8601-9
Yang, Z., Tian, Y., Yang, C., Wang, F., Liu, X.: Modification of wetting property of Inconel 718 surface by nanosecond laser texturing. Appl. Surf. Sci. 414, 313–324 (2017). https://doi.org/10.1016/j.apsusc.2017.04.050
Wang, X., Zheng, H., Wan, Y., Feng, W., Lam, Y.: Picosecond laser surface texturing of a stavax steel substrate for wettability control. Engineering 4, 816–821 (2018). https://doi.org/10.1016/j.eng.2018.10.006
Genna, S., Giannini, O., Guarino, S., Ponticelli, G., Tagliaferri, F.: Laser texturing of AISI 304 stainless steel: experimental analysis and genetic algorithm optimisation to control the surface wettability. Int. J. Adv. Manuf. Technol. 110, 3005–3022 (2020). https://doi.org/10.1007/s00170-020-06073-4
Godoy Vilar, J., Góra, W., See, T., Hand, D.: Impact of laser texturing parameters and processing environment in the anti-wetting transition of nanosecond laser generated textures. Laser Based Micro Nanoprocess XIV, 1126818 (2020). https://doi.org/10.1117/12.2544908
Moskal, D., Martan, J., Kucera, M.: Scanning strategy of high speed shifted laser surface texturing. In: Lasers in Manufacturing Conference (2017). https://www.wlt.de/lim/Proceedings2017/Data/PDF/Contribution77_final.pdf
Houdková, Š, Šperka, P., Repka, M., Martan, J., Moskal, D.: Shifted laser surface texturing for bearings applications. J. Phys. Conf. Ser. 843, 012076 (2017). https://doi.org/10.1088/1742-6596/843/1/012076
Martan, J., Moskal, D., Kučera, M.: Laser surface texturing with shifted method—functional surfaces at high speed. J. Laser Appl. 31, 022203 (2019). https://doi.org/10.2351/1.5096082
Martan, J., Moskal, D., Smeták, L., Honner, M.: Performance and accuracy of the shifted laser surface texturing method. Micromachines 11(5), 520 (2020). https://doi.org/10.3390/mi11050520
De La Cruz, A.R., Lahoz, R., Siegel, J., De La Fuente, G.F., Solis, J.: High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Opt. Lett. 39(8), 2491–2494 (2014). https://doi.org/10.1364/OL.39.002491
Batal, A., Sammons, R., Dimov, S.: Response of Saos-2 osteoblast-like cells to laser surface texturing, sandblasting and hydroxyapatite coating on CoCrMo alloy surfaces. Mater. Sci. Eng. C 98, 1005–1013 (2019). https://doi.org/10.1016/j.msec.2019.01.067
Romano, J.M., Garcia-Giron, A., Penchev, P., Dimov, S.: Triangular laser-induced submicron textures for functionalising stainless-steel surfaces. Appl. Surf. Sci. 440, 162–169 (2018). https://doi.org/10.1016/j.apsusc.2018.01.086
Vidyasagar, K.E.C., Rana, A., Kalyanasundaram, D.: Optimization of laser parameters for improved corrosion resistance of nitinol. Mater. Manuf. Process. 35(14), 1661–1669 (2020). https://doi.org/10.1080/10426914.2020.1784926
González, M., Ramos-Grez, J.A., Jeria, I., Guerra, C., Solis, R., Carvajal, L.: Effects of laser surface modification on Stainless Steel-316L thin annular discs: radial vs Cartesian laser scan strategies. SSRN Electron. J. (2022). https://doi.org/10.2139/ssrn.4090834
Kibria, G., Chatterjee, S., Shivakoti, I., Doloi, B., Bhattacharyya, B.: RSM based experimental investigation and analysis into laser surface texturing on Titanium using pulsed Nd:YAG laser, vol. 377, pp. 012203 (2018). https://doi.org/10.1088/1757-899X/377/1/012203
Shivakoti, I., Kalita, K., Kibria, G., Sharma, A., Pradhan, B.B., Ghadai, R.K.: Parametric analysis and multi response optimization of laser surface texturing of titanium super alloy. J. Braz. Soc. Mech. Sci. Eng. 43, 400 (2021). https://doi.org/10.1007/s40430-021-03115-0
Dikova, T.D., Kulinich, S.A., Iwamori, S., Yamaguchi, S.: Technological parameters optimization in picosecond laser texturing of titanium surfaces. J. Phys. Conf. Ser. 1859, 012037 (2021). https://doi.org/10.1088/1742-6596/1859/1/012037
Aguilar-Morales, A.I., Alamri, S., Kunze, T., Lasagni, A.F.: Influence of processing parameters on surface texture homogeneity using Direct Laser Interference Patterning. Opt. Laser Technol. 107, 216–227 (2018). https://doi.org/10.1016/j.optlastec.2018.05.044
Bharatish, A., Rajkumar, G.R., Gurav, P., Satheesh Babu, G., Narasimha Murthy, H.N., Roy, M.: Optimization of laser texture geometry and resulting functionality of nickel aluminium bronze for landing gear applications. Int. J. Lightweight Mater. Manuf. 4(3), 346–357 (2021). https://doi.org/10.1016/j.ijlmm.2021.04.004
Fidan, S., Canel, T., Sinmazçelik, T.: Laser parameter optimization for surface texturing of Inconel 625. Mater. Sci. Eng. Technol. 53(3), 289–307 (2021). https://doi.org/10.1002/mawe.202000174
Dinda, G.P., Dasgupta, A.K., Mazumder, J.: Texture control during laser deposition of nickel-based superalloy. Scr. Mater. 67, 503–506 (2012). https://doi.org/10.1016/j.scriptamat.2012.06.014
Paraschiv, A., Matache, G., Constantin, N., Vladut, M.: Investigation of scanning strategies and laser re-melting effects on top surface deformation of additively manufactured IN-625. Materials 15, 3198 (2022). https://doi.org/10.3390/ma15093198
Yang, L., Deng, Z., He, B., Ozel, T.: An experimental investigation on laser surface texturing of AISI D2 tool steel using nanosecond fiber laser. Lasers Manuf. Mater. Process. 8, 140–156 (2021). https://doi.org/10.1007/s40516-021-00144-4
Marattukalam, J.J., Karlsson, D., Pacheco, V., Beran, P., Wiklund, U., Jansson, U., Hjörvarsson, B., Sahlberg, M.: The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L-SS. Mater. Des. 193, 108852 (2020). https://doi.org/10.1016/j.matdes.2020.108852
Rajab, F.H., Al-Jumaily, A.K., Tayf Tariq, A.S., Stanescu, S.L., Al-Shaer, A.W., Li, L., Al-Hamd, R.K.S.: A comparison of characteristics of periodic surface micro/nano structures generated via single laser beam direct writing and particle lens array parallel beam processing. ASME. J. Micro Nano Manuf. 9(2), 021007 (2021). https://doi.org/10.1115/1.4052140
Saravanan, K.G., Thanigaivelan, R.: Optimization of laser parameters and dimple geometry using PCA-coupled GRG. Stroj. Vestn. J. Mech. Eng. 67(10), 525–533 (2021). https://doi.org/10.5545/sv-jme.2021.7246
Tong, X., Shen, J., Su, S.: Properties of variable distribution density of micro-textures on a cemented carbide surface. J. Mater. Res. Technol. 15, 1547–1561 (2021). https://doi.org/10.1016/j.jmrt.2021.08.051
Ken, B.: Business Statistics, Contemporary Decision Making, 6th edn., pp. 560–566. Wiley (2010)
Chinchanikar, S., Katiyar, J.K., Manav, O.: Multi-objective optimization of turning of titanium alloy under minimum quantity lubrication. J. Optim. Ind. Eng. 15(1), 243–260 (2022). https://doi.org/10.22094/JOIE.2021.1937743.1886
Deshmukh, N., Rajurkar, A., Kolekar, O., Mule, R., Chinchanikar, S.: Thermal modeling of laser surface micro-texturing: investigation on effects of laser parameters on dimple-texture dimensions and aspect ratio. Mater. Today Proc. 46(17), 8374–8380 (2021). https://doi.org/10.1016/j.matpr.2021.03.420