Nghiên cứu đặc tính biến dạng và độ bền của muối đá dưới các áp lực bao kín khác nhau

Springer Science and Business Media LLC - Tập 38 - Trang 5703-5717 - 2020
Wei Liu1, Xiong Zhang1, Haoran Li2, Jie Chen1
1State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
2School of Civil Engineering, University of Shijiazhuang Tiedao, Shijiazhuang, China

Tóm tắt

Đặc điểm biến dạng và độ bền của muối đá là rất quan trọng đối với sự an toàn trong việc lưu trữ năng lượng hydrocarbon (dầu, khí) trong các hang muối. Để khắc phục vấn đề xác định độ bền cực đại bằng cách cân nhắc đồng thời các đặc tính pha loãng của đá muối, các thí nghiệm nén đã được thực hiện trên đá muối Pingdingshan dưới các áp lực bao kín khác nhau. Kết quả cho thấy thí nghiệm nén đơn trục của đá muối thể hiện sự phá vỡ giòn, nhưng sự hiện diện của tạp chất đã cải thiện độ bền của các mẫu. Sau khi ứng suất bao kín đạt đến "áp lực chuyển tiếp"—6.55 MPa, được xác định bằng cách sử dụng phương pháp biểu đồ, độ bền của đá muối tăng lên đáng kể và xuất hiện hiện tượng tăng cường biến dạng mạnh. Một phương pháp thực nghiệm để xác định "áp lực chuyển tiếp" đã được đưa ra, và cũng đã đề xuất rằng áp lực hoạt động tối thiểu trong một hang lưu trữ khí muối nên cao hơn giá trị này. Các thí nghiệm dưới các áp lực bao kín khác nhau chỉ ra rằng áp lực bao kín cao hơn thì hiện tượng pha loãng xảy ra càng nhiều. Dựa trên kết quả này, một phương pháp để xác định độ bền cực đại của đá muối dựa trên một giá trị biến dạng trục nhất định (6%) hoặc điểm khởi đầu của pha loãng đã được đề xuất. Sau đó, độ bền cực đại của các mẫu đá muối trong nghiên cứu này đã được tính toán để xác minh tính khả thi của phương pháp này. Nghiên cứu này đã cung cấp các phương pháp xác định "áp lực chuyển tiếp" và độ bền cực đại cho đá muối, làm cơ sở tham khảo cho việc đánh giá và vận hành các hang lưu trữ khí muối.

Từ khóa

#muối đá #đặc tính biến dạng #độ bền #áp lực bao kín #hang lưu trữ khí

Tài liệu tham khảo

Aditya S, Chandan K, Gopi KL, Seshagiri RK, Ramanathan A (2018a) Engineering properties of rock salt and simplified closed-form deformation solution for circular opening in rock salt under the true triaxial stress state. Eng Geol 243:218–230 Aditya S, Chandan K, Gopi KL, Seshagiri RK, Ramanathan A (2018b) Estimation of creep parameters of rock salt from uniaxial compression tests. Int J Rock Mech Min Sci 107:243–248 Alemdag S, Gurocak Z, Cevik A, Cabalar AF, Gokceoglu C (2016) Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming. Eng Geol 203:70–82 Alkan H (2009) Percolation model for dilatancy-induced permeability of the excavation damaged zone in rock salt. Int J Rock Mech Min Sci 46(4):716–724 Alkan H, Cinar Y, Pusch G (2007) Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci 1(1):108–119 Bruno MS (2005) Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns. Office of Scientific & Technical Information Technical Reports Cai M, He M, Liu D (2002) Rock mechanics and engineering. Science Press, Beijing Cevik A, Sezer EA, Cabalar AF, Gokceoglu C (2011) Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 11(2):2587–2594 Chang J, Leung DYC, Wu CZ, Yuan ZH (2003) A review on the energy production, consumption, and prospect of renewable energy in China. Renew Sustain Energy Rev 7(5):453–468 Chen JW, Yang CH, Guo YT (2008) Study of sealability of cavern for natural gas storage in deep salt formation based on compaction–dilatancy boundary of salt. Chin J Rock Mechan Eng 28(2):3302–3309 Costa PVM, Costa AM, Szklo A, Branco DC, Freitas M, Rosa LP (2017) UGS in giant offshore salt caverns to substitute the actual Brazilian NG storage in LNG vessels. J Nat Gas Sci Eng 46:451–476 De G, Gao W (2018) Forecasting China’s natural gas consumption based on AdaBoost–particle swarm optimization-extreme learning machine integrated learning method. Energies 11:2938 Dong KY, Sun RJ, Li H, Jiang HD (2017) A review of china’s energy consumption structure and outlook based on a long-range energy alternatives modeling tool. Pet Sci 14:214–227 Düsterloh U, Lerche S, Lux KH (2013) Damage and healing properties of rock salt: long-term cyclic loading tests and numerical back analysis. Springer, Berlin Fan CJ, Li S, Luo MK, Zhou LJ, Zhang HH, Yang ZH (2019a) Effects of N- and S functionalities on binary gases co-adsorption onto coal macromolecule. Energy Fuels 33(5):3934–3946 Fan JY, Jiang DY, Liu W, Wu F, Chen J, Daemen JJK (2019b) Discontinuous fatigue of salt rock with low–stress intervals. Int J Rock Mech Min Sci 115(3):77–86 Fan CJ, Li S, Elsworth D, Han J, Yang Z (2020a) Experimental investigation on dynamic strength and energy dissipation characteristics of gas outburst prone coal. Energy Sci Eng. https://doi.org/10.1002/ese3.565 Fan JY, Xie HP, Chen J, Jiang DY, Li CB, Tiedeu WN et al (2020b) Preliminary feasibility analysis of a hybrid pumped–hydro energy storage system using abandoned coal mine goafs. Appl Energy. https://doi.org/10.1016/j.apenergy.2019.114007 Fan JY, Liu W, Jiang DY, Chen J, Tiedeu WN (2020c) Time interval effect in triaxial discontinuous cyclic compression tests and simulations for the residual stress in rock salt. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02150-y GIE Storage Map (2018). https://www.gie.eu/index.php/gie-publications/maps-data/gse-storage-map Hunsche U (1996) Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: Proceedings of the 4th conference on the mechanical behavior of salt. Trans Tech Publications, Clausthal, pp 163–174 Jong CD (2015) Gas storage valuation and optimization. J Nat Gas Sci Eng 24:365–378 Khamrat S, Tepnarong P, Artkhonghan K et al (2018) Crushed Salt Consolidation for Borehole Sealing in Potash Mines. Geotech Geol Eng 36:49–62 Labaune P, Rouabhi A, Tijani M, Blanco ML, You T (2018) Dilatancy Criteria for Salt Cavern Design: A Comparison Between Stress- and Strain-Based Approaches. Rock Mech Rock Eng 51:599–611. https://doi.org/10.1007/s00603-017-1338-4 Li HR (2015) Experimental study and theoretical analysis on damage characterization of salt rock. Doctoral thesis, Chinese Academy of Sciences Li YP, Liu W, Yang CH, Daemen JJK (2014) Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int J Rock Mech Min Sci 69:39–49 Li JL, Shi XL, Yang CH, Li YP, Wang TT, Ma HL, Shi H, Li JJ, Liu JQ (2017) Repair of irregularly shaped salt cavern gas storage by re-leaching under gas blanket. J Nat Gas Sci Eng 45:848–859 Li JL, Shi XL, Yang CH, Li YP, Wang TT, Ma HL (2018) Mathematical model of salt cavern leaching for gas storage in high–insoluble salt formations. Sci Rep 8(1):372 Li JL, Tang Y, Shi XL, Xu WJ, Yang CH (2019) Modeling the construction of energy storage salt caverns in bedded salt. Appl Energy 255:113866 Li H, Zhong ZL, Eshiet KII, Sheng Y, Liu XR, Yang DM (2020) Experimental investigation of the permeability and mechanical behaviours of chemically corroded limestone under different unloading conditions. Rock Mech Rock Eng 53:1587–1603 Liang WG, Yang CH, Zhao YS, Dusseault MB, Liu J (2007) Experimental investigation of mechanical properties of bedded salt rock. Int J Rock Mech Min Sci 44(3):400–411 Liang WG, Zhao YS, Xu SG, Dusseault MB (2011) Effect of strain rate on the mechanical properties of salt rock. Int J Rock Mech Min Sci 48(1):161–167 Lin B, Jia Z (2018) What are the main factors affecting carbon price in emission trading scheme? A case study in China. Sci Total Environ 654:525 Liu J, Yang CH, Wu W, Li YP (2006) Experiment study on short–term strength and deformation properties of rock salts. Chin J Rock Mechan Eng 25(S1):3104–3109 Liu W, Li YP, Yang CH, Heng S, Wang BW (2013) Analysis of physical and mechanical properties of impure salt rock. In: The 47th US Rock Mechanics/Geomechanics Symposium 2013, 1130–1139, San Francisco, 2013.6.23–2013.6.26 Liu JF, Bian Y, Zheng DW, Wu ZD, Li TY (2014a) Discussion on strength analysis of salt rock under triaxial compressive stress. Rock Soil Mech 35(4):919–925 Liu W, Muhammad N, Li YP, Spiers CJ, Ma HL, Yang CH (2014b) Experimental study of permeability of salt rock and its application to deep underground gas storage. Chin J Rock Mechan Eng 33(10):1953–1961 Liu W, Muhammad N, Chen J, Spiers CJ, Peach CJ, Jiang DY, Li YP (2016) Investigation on the permeability characteristics of bedded salt rocks and the tightness of natural gas caverns in such formations. J Nat Gas Sci Eng 35:468–482 Liu W, Zhang ZX, Chen J, Fan JY, Jiang DY, Daemen JJK et al (2019) Physical simulation of construction and control of two butted–well horizontal cavern energy storage using large molded rock salt samples. Energy 185:682–694 Liu W, Zhang X, Fan JY, Li YP, Wang L (2020a) Evaluation of potential for salt cavern gas storage and integration of brine extraction: cavern utilization, Yangtze River Delta Region. Nat Resour Res. https://doi.org/10.1007/s11053-020-09640-4 Liu W, Zhang ZX, Chen J, Jiang DY, Wu F, Fan JY, Li YP (2020b) Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: a case study in Jiangsu province. Energy. https://doi.org/10.1016/j.energy.2020.117348 Liu W, Zhang ZX, Fan JY, Jiang DY, Daemen JJK (2020c) Research on the stability and treatments of natural gas storage caverns with different shapes in bedded salt rocks. IEEE Access 8:18995–19007 Ma LJ, Liu XY, Fang Q, Xia HM, Li QS (2012) An elasto–viscoplastic damage model combined with generalized Hoek-Brown failure criterion for rock salt and its engineering application. J China Coal Soc 37(8):1299–1303 Ma L, Yang F, Xu H, Xie Z (2017) Post-yield properties of rock salt using the concept of mobilized strength components and the dilation angle. Geotech Geol Eng 35(7):1–9 Peng K, Zhou JQ, Zou QL, Yan FZ (2019) Deformation characteristics of sandstones during cyclic loading and unloading with varying lower limits of stress under different confining pressures. Int J Fatigue 127:82–100 Peng HH, Fan JY, Zhang X, Chen J, Li ZZ, Jiang DY, Liu C (2020) Computed tomography analysis on cyclic fatigue and damage properties of rock salt under gas pressure. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2020.105523 Qiao W, Yang Z (2020) Forecast the electricity price of US using a wavelet transform-based hybrid model. Energy 193:116704 Qiao W, Yang Z, Kang Z, Pan Z (2019) Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2019.103323 Schulze O, Popp T, Kern H (2001) Development of damage and permeability in deforming rock salt. Eng Geol 61(2):163–180 Shan PF, Lai XP, Liu XM (2020) An associated evaluation methodology of initial stress level of coal-rock masses in steeply inclined coal seams, Urumchi coal field, China. Eng Comput. https://doi.org/10.1108/EC-07-2019-0325 Shi XL, Liu W, Chen J, Jiang DY, Wu F, Zhang JW et al (2018) Softening model for failure analysis of insoluble interlayers during salt cavern leaching for natural gas storage. Acta Geotech 13(4):801–816 Spiers CJ, Carter NL (1998) Microphysics of rock salt flow in nature. In: Proceedings of the 4th conference on the mechanical behavior of salt. Trans Tech Publications, Clausthal, pp 115–128 Stormont JC, Daemen JJK (1992) Laboratory study of gas permeability changes in rock salt during deformation. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts 29(4):325–342 Stormont JC, Daemen JJK, Desai CS (2010) Prediction of dilation and permeability changes in rock salt. Int J Numer Anal Meth Geomech 16(8):545–569 Thienen-Visse KV, Hendriks D, Marsman A, Nepveu M, Groenenberg R, Wildenborg T et al (2014) Bow–tie risk assessment combining causes and effects applied to gas oil storage in an abandoned salt cavern. Eng Geol 168:149–166 Thoms R.L., Gehle R.M. A brief history of salt cavern use (keynote paper). In: Geertman RM, editor. Proceedings of 8th world salt symposium, Part 1, Amsterdam. The Netherlands: Elsevier B.V., 2000. p. 207–214. Urai JL, Spiers CJ, Zwart Amp HJ, Lister GS (1986) Weakening of rock salt by water during long–term creep. Nature 324(6097):554–557 Wang T, Li J, Jing G, et al (2019) Determination of the maximum allowable gas pressure for an underground gas storage salt cavern-A case study of Jintan, China. J Rock Mech Geotech Eng 11(2):251–262 Wu F, Gao RB, Zou QL, Chen J, Liu W, Peng K (2020a) Long-term strength determination and nonlinear creep damage constitutive model of salt rock based on multistage creep test: implications for underground natural gas storage in salt cavern. Energy Science and Engineering 00:1–12. https://doi.org/10.1002/ese3.617 Wu F, Gao RB, Liu J, Li CB (2020b) New fractional variable-order creep model with short memory. Appl Math Comput. https://doi.org/10.1016/j.amc.2020.125278 Xing W, Zhao J, Düsterloh U, Brückner D, Liu JF (2014) Experimental study of mechanical and hydraulic properties of bedded rock salt from the Jintan location. Acta Geotech 9(1):145–151 Yang CH, Daemen JJK, Yin JH (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36(2):233–242 Yang CH, Jing WJ, Daemen JJK, Zhang GM, Du C (2013) Analysis of major risks associated with hydrocarbon storage caverns in bedded salt rock. Reliability Engineering and System Safety 113:94–111 Yang CH, Wang TT, Li YP, Yang HJ, Li JJ, Qu DA et al (2015) Feasibility analysis of using abandoned salt caverns for large–scale underground energy storage in China. Appl Energy 137:467–481 Yin HW, Yang CH, Ma HL, Shi XL, Zhang N, Ge XB et al (2020) Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China. Acta Geotechnica 15:549–563 Zeng M, Li C, Zhou LS (2013) Progress and prospective on the police system of renewable energy in China. Renew Sustain Energy Rev 20(4):36–44 Zhang S, He Y (2013) Analysis on the development and policy of solar PV power in China[J]. Renew Sustain Energy Rev 21(5):393–401 Zhang Z, Jiang D, Liu W, Chen J, Li EB, Fan JY et al (2019) Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks. Environmental Earth Sciences 78(10):292 Zhang N, Shi XL, Zhang Y, Shan PF (2020a) Tightness analysis of underground natural gas and oil storage caverns with limited pillar widths in bedded rock salt. IEEE ACCESS. https://doi.org/10.1109/ACCESS.2020.2966006 Zhang N, Liu W, Zhang Y, Shan PF, Shi XL (2020b) Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt. Energies 13:1565. https://doi.org/10.3390/en13071565 Zhao X, Luo DK (2017) Driving force of rising renewable energy in china: environment, regulation and employment. Renew Sustain Energy Rev 68:48–56 Zhao YL, Zhang LY, Wang WJ, Tang JZ, Lin H, Wan W (2017) Transient pulse test and morphological analysis of single rock fractures. Int J Rock Mech Min Sci 91:139–154 Zhao YL, Zhang LY, Wang WJ, Wan W, Ma W (2018) Separation of elastoviscoplastic strains of rock and a nonlinear creep model. Int J Geomech 1:04017129 Zhao YL, Wang YX, Wang WJ, Tang LM, Liu Q (2019) Modeling of rheological fracture behavior of rock cracks subjected to hydraulic pressure and far-field stresses. Theoret Appl Fract Mech 101:59–66