Investigation on the Crack and Thinning Behavior of Aluminum Alloy 5052 Sheet in Stretch Flanging Process

Springer Science and Business Media LLC - Tập 20 - Trang 1212-1228 - 2020
Surendra Kumar1,2, M. Ahmed2, S. K. Panthi2
1Academy of Scientific and Innovative Research (AcSIR), Bhopal, India
2Council of Scientific and Industrial Research (CSIR)-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India

Tóm tắt

Stretch flanging is the important sheet metal-forming process which is widely used in automobile and aerospace sectors. The formability of sheet metal depends on various parameters such as material properties, geometry of the tool setup and process parameters. In the present work, effects of different die radius and sheet width on deformation behavior of sheet are studied by FEM simulation and experiments. The predicted FEM results are presented in the form of edge crack location and its propagation, crack length, forming load and strain distribution in sheet along the die profile radius. This study indicates that crack length increases with increase in the sheet width, while the crack length decreases with increase in the die radius. It is found that the crack propagation in stretch flanging process is affected by the strain distribution in sheet and this distribution of strain depends on many parameters. The crack initiates during deformation of the sheet at the die corner edge and propagates toward the center of the sheet along the die profile radius. Simulation results are compared with the experimental one in terms of crack length and variation in sheet thickness. FE simulation results are found in very good agreement with experimental results. Fractography study is also presented in terms of size, shape of the dimples along with their distribution on the fractured surface.

Tài liệu tham khảo

S. Kalpakjian, K. Vijai Sekar, S.R. Schmid, Manufacturing Engineering and Technology (Pearson, London, 2014) M.P. Groover, Fundamentals of Modern Manufacturing: Materials Processes, and Systems (Wiley, New York, 2007) W. Chuan-Tao, G. Kinzel, T. Altan, Failure and Wrinkling Criteria and Mathematical Modeling of Shrink and Stretch Flanging Operations in Sheet-Metal Forming. J. Mater. Proc. Technol. 53(3), 759–780 (1995). https://doi.org/10.1016/0924-0136(94)01766-T F. Stachowicz, Estimation of Hole-Flange Ability for Deep Drawing Steel Sheets. Arch. Civ. Mech. Eng. 8(2), 167–172 (2008). https://doi.org/10.1016/S1644-9665(12)60203-9 D.L. Logan, A First Course in the Finite Element Method (Cengage Learning, Boston, 2011) N.-M. Wang, M. Wenner, An Analytical and Experimental Study of Stretch Flanging. Int. J. Mech. Sci. (1974). https://doi.org/10.1016/0020-7403(74)90082-4 D. Li, Y. Luo, Y. Peng, P. Hu, The Numerical and Analytical Study on Stretch Flanging of V-Shaped Sheet Metal. J. Mater. Proc. Technol. 189(1), 262–267 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.035 W. Hu, Z. Wang, Anisotropic Characteristics of Materials and Basic Selecting Rules with Different Sheet Metal Forming Processes. J. Mater. Proc. Technol. 127(3), 374–381 (2007). https://doi.org/10.1016/S0924-0136(02)00410-7 P. Hu, D. Li, Y. Li, Analytical Models of Stretch and Shrink Flanging. Int. J. Mach. Tools Manuf 43(13), 1367–1373 (2003). https://doi.org/10.1016/S0890-6955(03)00150-0 N. Asnafi, On Stretch and Shrink Flanging of Sheet Aluminium by Fluid Forming. J. Mater. Proc. Technol. 96(1), 198–214 (1999). https://doi.org/10.1016/S0924-0136(99)00352-0 H. Yoshida, T. Yoshida, K. Sato, Y. Takahashi, T. Matsuno, J. Nitta, Evaluation and Improving Methods of Stretch Flangeability. Nippon Steel Tech. Rep. 1035, 18–24 (2013) S.K. Paul, Theoretical Analysis of Strain-and Stress-Based Forming Limit Diagrams. J. Strain Anal. Eng. Des. 48(3), 177–188 (2013). https://doi.org/10.1177/0309324712468524 H. Voswinckel, M. Bambach, G. Hirt, Improving Geometrical Accuracy for Flanging by Incremental Sheet Metal Forming. Int. J. Mater. Form. 8(3), 391–399 (2015). https://doi.org/10.1007/s12289-014-1182-y Y.-H. Lu, F.-H. Yeh, C.-L. Li, M.-T. Wu, Study of Using ANFIS to the Prediction in the Bore-Expanding Process. Int. J. Adv. Manuf. Technol. 26(5–6), 544–551 (2005). https://doi.org/10.1007/s00170-003-2024-0 G.E. Zhang, J. Yao, S.J. Hu, X. Wu, Shrink Flanging with Surface Contours. J. Manuf. Process. 5(2), 143–153 (2003). https://doi.org/10.1016/S1526-6125(03)70049-8 L. Chen, H. Chen, Q. Wang, Z. Li, Studies on Wrinkling and Control Method in Rubber Forming Using Aluminium Sheet Shrink Flanging Process. Mater. Des. 1980–2015(65), 505–510 (2015). https://doi.org/10.1016/j.matdes.2014.09.057 J. Cao, M. Li, Wrinkling Analysis in Shrink Flanging. J. Manuf. Sci. Eng. (2011). https://doi.org/10.1115/1.1381397 M.M. Kasaei, H.M. Naeini, B. Abbaszadeh, M. Mohammadi, M. Ghodsi, M. Kiuchi, R. Zolghadr, G. Liaghat, R.A. Tafti, M.S. Tehrani, Flange Wrinkling in Flexible Roll Forming Process. Proc. Eng. 81, 245–250 (2014). https://doi.org/10.1016/j.proeng.2014.09.158 X. Wang, J. Cao, An Analytical Prediction of Flange Wrinkling in Sheet Metal Forming. J. Manuf. Process. 2(2), 100–107 (2000). https://doi.org/10.1016/S1526-6125(00)70017-X G. Centeno, A. Martínez-Donaire, C. Vallellano, L. Martínez-Palmeth, D. Morales, C. Suntaxi, F. García-Lomas, Experimental Study on the Evaluation of Necking And Fracture Strains in Sheet Metal Forming Processes. Proc. Eng. 63, 650–658 (2013). https://doi.org/10.1016/j.proeng.2013.08.204 Y. Dewang, M. Hora, S. Panthi, Prediction of Crack Location and Propagation in Stretch Flanging Process of Aluminum Alloy AA-5052 Sheet Using FEM Simulation. Trans. Nonferrous Met. Soc. China 25(7), 2308–2320 (2015). https://doi.org/10.1016/S1003-6326(15)63846-8 X. Feng, L. Zhongqin, L. Shuhui, X. Weili, Study on the Influences of Geometrical Parameters on the Formability of Stretch Curved Flanging by Numerical Simulation. J. Mater. Proc. Technol. 145(1), 93–98 (2004). https://doi.org/10.1016/S0924-0136(03)00866-5 Y. Abe, K.-I. Mori, K. Norita, Gradually Contacting Punch for Improving Stretch Flangeability of Ultra-High Strength Steel Sheets. CIRP Ann. Manuf. Technol. 62(1), 263–266 (2013). https://doi.org/10.1016/j.cirp.2013.03.059 P. Sartkulvanich, B. Kroenauer, R. Golle, A. Konieczny, T. Altan, Finite Element Analysis of the Effect of Blanked Edge Quality Upon Stretch Flanging of AHSS. CIRP Ann. 59(1), 279–282 (2010). https://doi.org/10.1016/j.cirp.2010.03.108 A. Vafaeesefat, M. Khanahmadlu, Comparison of the Numerical and Experimental Results of the Sheet Metal Flange Forming Based on Shell-Elements Types. Int. J. Precis. Eng. Manuf. 12(5), 857 (2011). https://doi.org/10.1007/s12541-011-0114-8 S.F. Golovashchenko, Quality of Trimming and its Effect on Stretch Flanging of Automotive Panels. J. Mater. Eng. Perform. 17(3), 316–325 (2008). https://doi.org/10.1007/s11665-008-9220-x T. Wen, S. Zhang, J. Zheng, Q. Huang, Q. Liu, Bi-Directional Dieless Incremental Flanging of Sheet Metals Using a Bar Tool with Tapered Shoulders. J. Mater. Proc. Technol. 229, 795–803 (2016). https://doi.org/10.1016/j.jmatprotec.2015.11.005 J. McDougall, M. Stevenson, K. McKeever, Analysis of Sheet Steel Fracture During Deep Drawing. J. Fail. Anal. Prev. 5(5), 20–25 (2005). https://doi.org/10.1016/j.jmapro.2017.09.033 R. Gupta, V.A. Kumar, M. Karthikeyan, P. Ramkumar, P.R. Narayanan, P. Sinha, Investigation of Cracks Generated in Columbium Alloy (C-103) Sheets During Deep Drawing Operation. J. Fail. Anal. Prev. 10(3), 228–232 (2010). https://doi.org/10.1007/s11668-010-9341-z G. Pantazopoulos, A. Sampani, Failure Analysis of Fractured Deep-Drawn 1050 Aluminum Circles. J. Fail. Anal. Prev. 6(3), 24–28 (2006). https://doi.org/10.1361/154770206X107307 J. Wu, F. Zou, Deep Drawing Failure Map of a Coated Metal Sheet Based on the Process Parameters. J. Fail. Anal. Prev. 16(3), 361–368 (2016). https://doi.org/10.1007/s11668-016-0097-y G. Yoganjaneyulu, C.S. Narayanan, A Comparison of Fracture Limit Analysis on Titanium Grade 2 and Titanium Grade 4 Sheets During Single Point Incremental Forming (Anal. Prev., J Fail, 2019). https://doi.org/10.1007/s11668-019-00721-y S.V. Kumbhar, Pressure Optimization and Failure Prediction for Deep Drawing Process of Sheet Metal Products: A Case Study. J. Fail. Anal. Prev. 18(4), 948–956 (2018). https://doi.org/10.1007/s11668-018-0485-6 S. Kumar, M. Ahmed, S.K. Panthi, Effect of Punch Profile on Deformation Behaviour of AA5052 Sheet in Stretch Flanging Process. Arch. Civ. Mech. Eng. 20, 18 (2020). https://doi.org/10.1007/s43452-020-00016-2 J.R. Davis, Tensile Testing (ASM International, Ohio, 2004) M. Ahmed, D.R. Kumar, M. Nabi, Enhancement of Formability of AA5052 Alloy Sheets by Electrohydraulic Forming Process. J. Mater. Eng. Perform. 26(1), 439–452 (2017). https://doi.org/10.1007/s11665-016-2446-0 A. Documentation, Getting Started with Abaqus Interactive Edition, Version (2013) G.E. Dieter, D.J. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986) H. Hooputra, H. Gese, H. Dell, H. Werner, A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions. Int. J. Crashworthiness 9(5), 449–464 (2004). https://doi.org/10.1533/ijcr.2004.0289 R. Kiran, K. Khandelwal, Gurson Model Parameters for Ductile Fracture Simulation in ASTM A992 Steels. Fatigue Fract. Eng. Mater. Struct. 37(2), 171–183 (2014). https://doi.org/10.1111/ffe.12097 Y. Bao, Prediction of Ductile Crack Formation in Uncracked Bodies. Ph. D. thesis, Impact and Crashworthiness Lab, Massachusetts Institute of Technology, Cambridge, MA (2003) F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes. J. Appl. Mech. 35(2), 363–371 (1968). https://doi.org/10.1115/1.3601204 S. Kut, A Simple Method to Determine Ductile Fracture Strain in a Tensile Test of Plane Specimen’s. Metalurgija 49(4), 295–299 (2010)