Investigation on Structural, Dielectric, Thermistor Parameters and Negative Temperature Coefficient Behaviour of Nd, Gd, and La-Doped Bismuth Ferrite

Transactions on Electrical and Electronic Materials - Tập 23 Số 5 - Trang 522-534 - 2022
Priyambada Mallick1, Anurag Sahu2, Susanta Kumar Biswal1, S. K. Satpathy1, Banarji Behera2
1Centurion University of Technology and Management, Bhubaneswar, Odisha, India
2School of Physics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

N.B. Delfard, H. Maleki, A.M. Badizi, M. Taraz, Enhanced structural, optical, and multiferroic properties of rod-like bismuth iron oxide nanoceramics by dopant lanthanum. J. Supercond. Nov. Magn. 33(4), 1207–1214 (2020). https://doi.org/10.1007/s10948-019-05294-3

J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126(1), 47–59 (2011). https://doi.org/10.1080/10584587.2011.574986

P.S. Kohli, P. Devi, P. Reddy, K.K. Raina, M.L. Singla, Synthesis and electrical behavior study of Mn3O4 nanoceramic powder for low temperature NTC thermistor. J. Mater. Sci. Mater. Electron. 23(10), 1891–1897 (2012). https://doi.org/10.1007/s10854-012-0680-2

M. Čebela et al., BiFeO3 perovskites: a multidisciplinary approach to multiferroics. Ceram. Int. 43(1), 1256–1264 (2017). https://doi.org/10.1016/j.ceramint.2016.10.074

A.K. Sahu, S.K. Satpathy, B. Behera, Dielectric and frequency-dependent transport properties of lanthanum-doped bismuth ferrite. J. Adv. Dielectr. 9(4), 1–9 (2019). https://doi.org/10.1142/S2010135X19500310

A. Kumar, P. Sharma, D. Varshney, Structural and ferroic properties of La, Nd, and Dy doped BiFeO3 ceramics. J. Ceram. 2015, 1–8 (2015). https://doi.org/10.1155/2015/869071

N. Wang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. (2020). https://doi.org/10.1007/s40820-020-00420-6

A.K. Sahu, P. Mallick, S.K. Satpathy, B. Behera, Effect on structural, electrical and temperature sensing behavior of neodymium doped bismuth ferrite. Adv. Mater. Lett. 12(7), 21071648 (2021). https://doi.org/10.5185/amlett.2021.071648

S. Irfan et al., Critical review: bismuth ferrite as an emerging visible light active nanostructured photocatalyst. J. Mater. Res. Technol. 8(6), 6375–6389 (2019). https://doi.org/10.1016/j.jmrt.2019.10.004

M. Shellaiah, K.W. Sun, Review on sensing applications of perovskite nanomaterials. Chemosensors 8(3), 55 (2020). https://doi.org/10.3390/chemosensors8030055

C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang, C.R. Zhou, Electrical properties of SrxBa1–xFe0.6Sn0.4O3–ε NTC thermistors. Bull. Mater. Sci. 35(3), 425–431 (2012). https://doi.org/10.1007/s12034-012-0294-6

Y. Li, W.Q. Cao, J. Yuan, D.W. Wang, M.S. Cao, Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J. Mater. Chem. C 3(36), 9276–9282 (2015). https://doi.org/10.1039/c5tc01684c

Z.X. Cheng et al., Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys. 103(7), 137–140 (2008). https://doi.org/10.1063/1.2839325

B.H. Toby, R factors in rietveld analysis: how good is good enough? Powder Diffr. 21(1), 67–70 (2006). https://doi.org/10.1154/1.2179804

S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, P. Nayak, Electrical conductivity of Gd doped BiFeO3-PbZrO3 composite. Front. Mater. Sci. 7(3), 295–301 (2013). https://doi.org/10.1007/s11706-013-0215-7

A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, M.R. Muhamad, Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum 86(8), 1107–1112 (2012). https://doi.org/10.1016/j.vacuum.2011.10.011

H. Heryanto, B. Abdullah, D. Tahir, Analysis of structural properties of X-ray diffraction for composite copper-activated carbon by modified Williamson-Hall and size-strain plotting methods. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1080/1/012007

E.A. Badawi, M.A. Abdel-Rahman, A. Mostafa, M. Abdel-Rahman, Determination of the crystallite size & micro-strain by novel method from XRD profile. Appl. Phys. 2, 1–15 (2019). https://doi.org/10.31058/j.ap.2019.21001

A. Begum, A. Hussain, A. Rahman, Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J. Nanotechnol. 3(1), 438–443 (2012). https://doi.org/10.3762/bjnano.3.50

H.Y. Dai, Z.P. Chen, T. Li, R.Z. Xue, J. Chen, Structural and electrical properties of bismuth ferrite ceramics sintered in different atmospheres. J. Supercond. Nov. Magn. 26(10), 3125–3132 (2013). https://doi.org/10.1007/s10948-013-2130-7

A.K. Sahu, S.K. Satpathy, S.K. Rout, B. Behera, Dielectric and frequency dependent transport properties of gadolinium doped bismuth ferrite. Trans. Electr. Electron. Mater. 21(2), 217–226 (2020). https://doi.org/10.1007/s42341-020-00170-7

S. Sahoo, Enhanced time response and temperature sensing behavior of thermistor using Zn-doped CaTiO3 nanoparticles. J. Adv. Ceram. 7(2), 99–108 (2018). https://doi.org/10.1007/s40145-018-0261-9

R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38(6), 5181–5188 (2012). https://doi.org/10.1016/j.ceramint.2012.03.024

X. Xiong et al., Structural and electrical properties of thick film thermistors based on perovskite La-Mn-Al-O. Ceram. Int. 40(7 PART B), 10505–10510 (2014). https://doi.org/10.1016/j.ceramint.2014.03.022

S. Sahoo, S.K.S. Parashar, S.M. Ali, CaTiO3 nano ceramic for NTCR thermistor based sensor application. J. Adv. Ceram. 3(2), 117–124 (2014). https://doi.org/10.1007/s40145-014-0100-6

Y. Saad, I. Álvarez-Serrano, M.L. López, M. Hidouri, Dielectric response and thermistor behavior of lead-free x NaNbO3–(1–x) BiFeO3 electroceramics. Ceram. Int. 44(15), 18560–18570 (2018). https://doi.org/10.1016/j.ceramint.2018.07.078

D. Saha, A. Das Sharma, A. Sen, H.S. Maiti, Preparation of bixbyite phase (MnxFe1–x)2O3 for NTC thermistor applications. Mater. Lett. 55(6), 403–406 (2002). https://doi.org/10.1016/S0167-577X(02)00402-0

C.L. Yuan, X.Y. Liu, C.R. Zhou, J.W. Xu, B. Li, Electrical properties of lead-free thick film NTC thermistors based on perovskite-type BaCoIIxCoIII2xBi1–3xO3. Mater. Lett. 65(5), 836–839 (2011). https://doi.org/10.1016/j.matlet.2010.12.013

K. Jan, S. Dorota, Properties of multilayer NTC perovskite thermistors prepared by tape casting, lamination and cofiring. Key Eng. Mater. 605, 507–510 (2014). https://doi.org/10.4028/www.scientific.net/KEM.605.507

Z.P. Nenova, T.G. Nenov, Linearization circuit of the thermistor connection. IEEE Trans. Instrum. Meas. 58(2), 441–449 (2009). https://doi.org/10.1109/TIM.2008.2003320

J. Kulawik, D. Szwagierczak, B. Gröger, A. Skwarek, Fabrication and characterization of bulk and thick film perovskite NTC thermistors. Microelectron. Int. 24(2), 14–18 (2007). https://doi.org/10.1108/13565360710745548

E.A. De Vasconcelos, S.A. Khan, W.Y. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuat. A Phys. 83(1), 167–171 (2000). https://doi.org/10.1016/S0924-4247(00)00351-4

S. Jagtap, S. Rane, U. Mulik, D. Amalnerkar, Thick film NTC thermistor for wide range of temperature sensing. Microelectron. Int. 24(2), 7–13 (2007). https://doi.org/10.1108/13565360710745539