Investigation of wrinkling behaviour in the creased thin-film laminates

Parth K. Kamaliya1, S. H. Upadhyay1, Chinthaka Mallikarachchi2
1Smart Material and Structures Lab, Department of Mechanical & Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
2Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbott, A.C., Buskohl, P.R., Joo, J.J., Reich, G.W., Vaia, R.A.: Characterization of creases in polymers for adaptive origami structures. In: Materials, Smart, Structures, Adaptive, Systems, Intelligent (eds.) ASME, pp. 1–7. Newport, Rhode Island, USA (2014)

Arya, M.: Packaging and Deployment of Large Planar Spacecraft Structures, (2016)

Boni, L., Mengali, G., Quarta, A.A.: Solar sail structural analysis via improved finite element modeling. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231, 306–318 (2017). https://doi.org/10.1177/0954410016636164

Brighenti, R.: Influence of a central straight crack on the buckling behaviour of thin plates under tension, compression or shear loading. Int. J. Mech. Mater. Des. 6, 73–87 (2010). https://doi.org/10.1007/s10999-010-9122-6

Cai, J., Ren, Z., Ding, Y., Deng, X., Xu, Y., Feng, J.: Deployment simulation of foldable origami membrane structures. Aerosp. Sci. Technol. 67, 343–353 (2017). https://doi.org/10.1016/j.ast.2017.04.002

Deng, X., Pellegrino, S.: Wrinkling of orthotropic viscoelastic membranes. AIAA J. 50, 668–681 (2012). https://doi.org/10.2514/1.J051255

Deng, X., Xu, Y., Clarke, C.: Wrinkling modelling of space membranes subject to solar radiation pressure. Compos. Part B Eng. 157, 266–275 (2019). https://doi.org/10.1016/j.compositesb.2018.08.088

El-Abbasi, N., Meguid, S.A.: A continuum based thick shell element for large deformation analysis of layered composites. Int. J. Mech. Mater. Des. 2, 99–115 (2005). https://doi.org/10.1007/s10999-005-4445-4

Fenci, G.E., Currie, N.G.R.: Deployable structures classification: A review. Int. J. Sp. Struct. 32, 112–130 (2017). https://doi.org/10.1177/0266351117711290

Formation of Plastic Creases in Thin Polyimide Films: Dharmadasa, B.Y., McCallum, M.W., Mierunalan, S., Dassanayake, S.P., Mallikarachchi, C.H.M.Y., López Jiménez, F. J. Appl. Mech. 87, 1–11 (2020). https://doi.org/10.1115/1.4046002

Gough, A., Hossain, N.M.A., Jenkins, C.H., Blandino, J., Hendricks, A.: Experimental and numerical study of creased membranes. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Austin, Texas (2005)

Hong, Y., Yao, W., Xu, Y.: Numerical and experimental investigation of wrinkling pattern for aerospace laminated membrane structures. Int. J. Aerosp. Eng. (2017). https://doi.org/10.1155/2017/8476041

Hossain, N.M.A., Woo, K., Jenkins, C.H.: Nonlinear Material Response of Systematically Creased Membranes. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. , Newport, Rhode Island, USA (2006)

Christopher H. M. Jenkins: Gossamer Spacecraft: Membrane And Inflatable Structures Technology For Space Applications. American Institute of Aeronautics and Astronautics, Inc. (2001)

Jenkins, C.H.M.: Recent Advances in Gossamer Spacecraft. American Institute of Aeronautics and Astronautics (2006)

Kumar, S., Upadhyay, S.H., Mathur, A.C.: Wrinkling simulation of membrane structures under tensile and shear loading. Columbia Int. Publ. J. Vib. Anal. 3, 17–33 (2015). https://doi.org/10.7726/jvamc.2015.1002

Li, G., Zhu, Z.H., Du, C., Meguid, S.A.: Characteristics of coupled orbital-attitude dynamics of flexible electric solar wind sail. Acta Astronaut. 159, 593–608 (2019). https://doi.org/10.1016/j.actaastro.2019.02.009

Liu, M.: Boundary shape design of planar membrane structures based on an airy stress model. Adv. Mech. Eng. 12, 1–9 (2020). https://doi.org/10.1177/1687814020916039

Liu, M., Huang, J., Wang, Y.: Wrinkling analysis and control of rectangular space membrane. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231, 1959–1969 (2017). https://doi.org/10.1177/0954410016675890

Liu, Z.Q., Qiu, H., Li, X., Yang, S.L.: Review of large spacecraft deployable membrane antenna structures. Chin. J. Mech. Eng. 30, 1447–1459 (2017). https://doi.org/10.1007/s10033-017-0198-x

Malmberg, C., Kack, B.: Aluminium foil at multiple length scales, mechanical tests and numerical simulations in Abaqus, (2015)

Papa, A., Pellegrino, S.: Systematically creased thin-film membrane structures. J. Spacecr. Rockets. 45, 10–18 (2008). https://doi.org/10.2514/1.18285

Sabri, F., Meguid, S.A.: Wrinkling prediction of laminated composite panels under in-plane shear deformation. Acta Mech. 232, 57–72 (2021). https://doi.org/10.1007/s00707-020-02847-9

Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: Packing and rigidization. J. Spacecr. Rockets. 51, 762–778 (2014). https://doi.org/10.2514/1.A32598

Secheli, G., Viquerat, A., Aglietti, G.S.: A model of packaging folds in thin metal-polymer laminates. J. Appl. Mech. Trans. ASME. 84, 1–11 (2017). https://doi.org/10.1115/1.4037503

Seedhouse, E.: Expandable module technologies. In: Bigelow Aerospace: Colonizing Space One Module at a Time, pp. 17–39. Springer International, Cham (2015)

Spencer, D.A., Johnson, L., Long, A.C.: Solar sailing technology challenges. Aerosp. Sci. Technol. 93, 105276 (2019). https://doi.org/10.1016/j.ast.2019.07.009

Walker, S.J.I., Aglietti, G.S.: A study of tape spring fold curvature for space deployable structures. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 313–325 (2007). https://doi.org/10.1243/09544100JAERO209

Wang, C.G., Du, X.W.: Wrinkle analysis of space membrane structures and applications. Int. J. Comput. Methods Eng. Sci. Mech. 8, 159–164 (2007). https://doi.org/10.1080/15502280701252594

Wang, C.G., Lan, L., Tan, H.F.: Secondary wrinkling analysis of rectangular membrane under shearing. Int. J. Mech. Sci. 75, 299–304 (2013). https://doi.org/10.1016/j.ijmecsci.2013.07.009

Wang, X.F., Yang, Q.S., Law, S.S.: Wrinkled membrane element based on the wrinkling potential. Int. J. Solids Struct. 51, 3532–3548 (2014). https://doi.org/10.1016/j.ijsolstr.2014.06.004

Wang, C.G., Tan, H.F., Lan, L., Li, L.: Mode jumping analysis of thin film secondary wrinkling. Int. J. Mech. Sci. 104, 138–146 (2015). https://doi.org/10.1016/j.ijmecsci.2015.10.007

Wang, Y., Guo, H., Yang, H., Liu, R., Deng, Z.: Deployment analysis and optimization of a flexible deployable structure for large synthetic aperture radar antennas. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 230, 615–627 (2016). https://doi.org/10.1177/0954410015594638

Wong, Y.W., Pellegrino, S.: Wrinkled membranes part i: experiments. J. Mech. Mater. Struct. 1, 3–25 (2006). https://doi.org/10.2140/jomms.2006.1.3

Wong, Y.W., Pellegrino, S.: Mechanics of materials and structures part ii: analytical models. J. Mech. Mater. Struct. 1, 25–59 (2006)

Woo, K., Jenkins, C.H.: Analysis of crease-wrinkle interaction for thin sheets. J. Mech. Sci. Technol. 26, 905–916 (2012). https://doi.org/10.1007/s12206-011-1247-5

Woo, K., Jenkins, C.H.: Effect of crease orientation on wrinkle-crease interaction for thin membranes. J. Spacecr. Rockets. 50, 1024–1034 (2013). https://doi.org/10.2514/1.A32183

Yang, F., Meguid, S.A., Hamouda, A.M.S.: Kinematically admissible folding mechanisms for the progressive collapse of foam filled conical frusta. Int. J. Mech. Mater. Des. 14, 105–126 (2018). https://doi.org/10.1007/s10999-016-9364-z

Yang, F., Fan, H., Meguid, S.A.: Effect of foam-filling on collapse mode transition of thin-walled circular columns under axial compression: analytical, numerical and experimental studies. Int. J. Mech. Sci. 150, 665–676 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.047