Investigation of the spectrum of singular Sturm–Liouville operators on unbounded time scales

São Paulo Journal of Mathematical Sciences - Tập 14 Số 1 - Trang 327-340 - 2020
Bilender P. Allahverdiev1, Hüseyin Tuna2
1Department of Mathematics, Süleyman Demirel University, Isparta, Turkey
2Department of Mathematics, Mehmet Akif Ersoy University, Burdur, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hilger, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990)

Jones, M.A., Song, B., Thomas, D.M.: Controlling wound healing through debridement. Math. Comput. Model. 40(9–10), 1057–1064 (2004)

Spedding, V.: Taming nature’s numbers. New Sci. 179, 28–31 (2003)

Thomas, D.M., Vandemuelebroeke, L., Yamaguchi, K.: A mathematical evolution model for phytoremediation of metals, discrete and continuous dynamical systems. Ser. B 5(2), 411–422 (2005)

Allahverdiev, B.P., Eryilmaz, A., Tuna, H.: Dissipative Sturm-Liouville operators with a spectral parameter in the boundary condition on bounded time scales. Electron J. Differ. Equ. 95, 1–13 (2017)

Guseinov, GSh: An expansion theorem for a Sturm–Liouville operator on semi-unbounded time scales. Adv. Dyn. Syst. Appl. 3, 147–160 (2008)

Allakhverdiev, B.P.: Extensions of symmetric singular second-order dynamic operators on time scales. Filomat 30(6), 1475–1484 (2016)

Allahverdiev, B.P.: Non-self-adjoint singular second-order dynamic operators on time scale. Math. Meth. Appl. Sci. 42, 229–236 (2019)

Zemánek, P.: Krein-von Neumann and Friedrichs extensions for second order operators on time scales. Int. J. Dyn. Syst. Differ. Equ. 3(1–2), 132–144 (2011)

Tuna, H.: Completeness of the root vectors of a dissipative Sturm–Liouville operators in time scales. Appl. Math. Comput. 228, 108–115 (2014)

Agarwal, R.P., Bohner, M., Wong, J.P.Y.: Sturm-Liouville eigenvalue problems on time scales. Appl. Math. Comput. 99, 2(3), 153–166 (1999)

Huseynov, A.: Weyl’s Limit Point and Limit Circle for a Dynamic Systems, Dynamical Systems and Methods, 215–225. Springer, New York (2012)

Davidson, F.A., Rynne, B.P.: Eigenfunction expansions in L2 spaces for boundary value problems on time-scales. J. Math. Anal. Appl. 335(2), 1038–1051 (2007)

Hoffacker, J.: Green’s functions and eigenvalue comparisons for a focal problem on time scales. Comput. Math. Appl. 45(6–9), 1339–1368 (2003)

Allahverdiev, B.P., Tuna, H.: Spectral analysis of singular Sturm–Liouville operators on time scales. Ann. Univ. Mariae Curie-Sklodowska Sectio A Math. 72(1), 1–11 (2018)

Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68(2), 220–269 (1910)

Glazman, I.M.: Direct Methods of the Qualitative Spectral Analysis of Singular Differential Operators. Israel Program of Scientific Translations, Jeruzalem (1965)

Berkowitz, J.: On the discreteness of spectra of singular Sturm–Liouville problems. Commun. Pure Appl. Math. 12, 523–542 (1959)

Friedrics, K.: Criteria for the Discrete Character of the Spectra of Ordinary Differential Equations. Courant Anniversary Volume. Interscience, New York (1948)

Friedrics, K.: Criteria for discrete spectra. Commun. Pure. Appl. Math. 3, 439–449 (1950)

Hinton, D.B., Lewis, R.T.: Discrete spectra critaria for singular differential operators with middle terms. Math. Proc. Cambridge Philos. Soc. 77, 337–347 (1975)

Ismagilov, R.S.: Conditions for semiboundedness and discreteness of the spectrum for one-dimensional differential equations (Russian). Dokl. Akad. Nauk SSSR 140, 33–36 (1961)

Molchanov, A.M.: Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations (Russian). Trudy Moskov. Mat. Obs. 2, 169–200 (1953)

Allahverdiev, B.P., Tuna, H.: Qualitative spectral analysis of singular $$q-$$Sturm–Liouville operators. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00747-3

Rollins, L.W.: Criteria for discrete spectrum of singular self-adjoint differential perators. Proc. Am. Math. Soc. 34, 195–200 (1972)

Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)

Bohner, M., Peterson, A. (eds.): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

Lakshmikantham, V., Sivasundaram, S., Kaymakcalan, B.: Dynamic Systems on Measure Chains. Kluwer Academic Publishers, Dordrecht (1996)

Atici, M.F., Guseinov, G.S.: On Green’s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math. 141(1–2), 75–99 (2002)

Agarwal, R.P., Bohner, M., Li, W.-T.: Nonoscillation and Oscillation Theory for Functional Differential Equations, vol. 267 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York (2004)

Guseinov, GSh: Self-adjoint boundary value problems on time scales and symmetric Green’s functions. Turkish J. Math. 29(4), 365–380 (2005)

Anderson, D.R., Guseinov, GSh, Hoffacker, J.: Higher-order self-adjoint boundary-value problems on time scales. J. Comput. Appl. Math. 194(2), 309–342 (2006)

Rynne, B.P.: $$L^{2}$$ spaces and boundary value problems on time-scales. J. Math. Anal. Appl. 328, 1217–1236 (2007)

Naimark, M. A.: Linear Differential Operators, 2nd edn.,1968, Nauka, Moscow, English transl. of 1st. edn., 1, 2, New York (1969)

Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1989)

Dunford, N., Schwartz, J.T.: Linear Operators, Part II: Spectral Theory. Interscience, New York (1963)

Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations Part I. Second Edition Clarendon Press, Oxford (1962)