Investigation of the random forest framework for classification of hyperspectral data

Institute of Electrical and Electronics Engineers (IEEE) - Tập 43 Số 3 - Trang 492-501 - 2005
Jeroen van der Ham1, Yangchi Chen1, Melba M. Crawford1, Joydeep Ghosh2
1[Center for Space Res., Univ. of Texas, Austin, TX, USA]
2Department of Electrical and Computer Engineering, University of Texas, Austin, Austin, TX, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/36.934070

10.1142/S0218001404003411

10.1002/0471660264

10.1007/BF00058655

10.1080/095400996116839

10.1109/34.709601

10.1007/s100440200011

10.1023/A:1010933404324

10.1162/153244302320884605

dietterich, 1995, solving multiclass learning problems using error correcting output codes, J Artif Intell Res, 2, 263, 10.1613/jair.105

10.1109/36.774728

10.1109/34.75512

10.1109/36.975001

10.1109/36.934069

10.1109/72.554193

10.1145/279943.279962

10.1109/79.974718

10.1109/36.739109

10.1109/TGRS.2003.815018

10.1007/s100440200019

10.1080/01431160500112759

crawford, 2003, robust classifiers for hyperspectral data analysis using limited training data, 2003 Tyrrhenian International Workshop on Remote Sensing

breiman, 1984, Classification and Regression Trees

kumar, 1999, gamls: a generalized framework for associative modular learning systems, Proc Applications and Science of Comp Intelligence II, 24, 10.1117/12.342865

10.1080/01431160110115960

10.1109/IGARSS.1994.399740