Investigation of the interaction between anticancer drug ibrutinib and double-stranded DNA by electrochemical and molecular docking techniques
Tài liệu tham khảo
Liu, 2012, Development of electrochemical DNA biosensors, TrAC -, Trends Anal. Chem., 37, 101, 10.1016/j.trac.2012.03.008
Chiti, 2001, Electrochemical DNA biosensor for environmental monitoring, Anal. Chim. Acta., 427, 155, 10.1016/S0003-2670(00)00985-5
Rauf, 2005, Electrochemical approach of anticancer drugs-DNA interaction, J. Pharm. Biomed. Anal., 37, 205, 10.1016/j.jpba.2004.10.037
Mollarasouli, 2020, Electrochemical, spectroscopic, and molecular docking studies of the interaction between the anti-retroviral drug indinavir and dsDNA, J. Pharm. Anal., 10, 473, 10.1016/j.jpha.2020.08.004
Rafique, 2013, Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods, Biosens. Bioelectron., 44, 21, 10.1016/j.bios.2012.12.028
Wang, 1997, Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips, Biosens. Bioelectron., 12, 587, 10.1016/S0956-5663(96)00076-0
Kurbanoglu, 2016, Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals, J. Electroanal. Chem., 775, 8, 10.1016/j.jelechem.2016.05.022
Bilge, 2021, Rod-like CuO nanoparticles/waste masks carbon modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-cancer drug pazopanib in biological and pharmaceutical samples, Sensors Actuators B Chem., 343, 10.1016/j.snb.2021.130109
Bilge, 2020, Green synthesis of carbon based biosensor materials from algal biomass for the sensitive detection of vardenafil, J. Electroanal. Chem., 871, 10.1016/j.jelechem.2020.114286
Dogan-Topal, 2011, A novel sensitive electrochemical DNA biosensor for assaying of anticancer drug leuprolide and its adsorptive stripping voltammetric determination, Talanta., 83, 780, 10.1016/j.talanta.2010.10.049
Karadurmuz, 2016, Electrochemical DNA Biosensors in Drug Analysis, Curr. Pharm. Anal., 13, 195, 10.2174/1573412912666160422152634
Nussbaumer, 2011, Analysis of anticancer drugs: A review, Talanta., 85, 2265, 10.1016/j.talanta.2011.08.034
Chen, 2019, Exploring the binding interaction of calf thymus DNA with lapatinib, a tyrosine kinase inhibitor: multi-spectroscopic techniques combined with molecular docking, J. Biomol. Struct. Dyn., 37, 576, 10.1080/07391102.2018.1433067
Luo, 2020, Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation, J. Biomol. Struct. Dyn., 38, 4210, 10.1080/07391102.2019.1676824
Chen, 2019, Characterizing the Binding Interaction between Erlotinib and Calf Thymus DNA In Vitro Using Multi-Spectroscopic Methodologies and Viscosity Measurement Combined with Molecular Docking and DFT Calculation, ChemistrySelect., 4, 3774, 10.1002/slct.201900089
Burger, 2013, Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765), Leuk. Lymphoma., 54, 2385, 10.3109/10428194.2013.777837
Salem, 2019, Cardiovascular Toxicities Associated With Ibrutinib, J. Am. Coll. Cardiol., 74, 1667, 10.1016/j.jacc.2019.07.056
Cameron, 2014, Ibrutinib: First global approval, Drugs., 74, 263, 10.1007/s40265-014-0178-8
Drew, 1981, Structure of a B-DNA dodecamer: conformation and dynamics, Proc. Natl. Acad. Sci. U. S. A., 78, 2179, 10.1073/pnas.78.4.2179
M. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, Ga. Petersson, gaussian 09, Revision d. 01, Gaussian, Inc., Wallingford CT. 201 (2009).
Trott, 2010, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31, 455, 10.1002/jcc.21334
Bernstein, 1977, The Protein Data Bank: a computer-based archival file for macromolecular structures, J. Mol. Biol., 112, 535, 10.1016/S0022-2836(77)80200-3
Pešić, 2020, Electrochemical characterization and estimation of DNA-binding capacity of a series of novel ferrocene derivatives, Bioelectrochemistry., 132, 10.1016/j.bioelechem.2019.107412