Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu khả năng ức chế ăn mòn của CTAB và SDS trên thép carbon bằng cách sử dụng chiến lược thiết kế thực nghiệm
Tóm tắt
Hiệu suất ức chế ăn mòn của sodium dodecyl sulfate (SDS) và cetyltrimethyl ammonium bromide (CTAB) trên thép carbon đã được điều tra trong dung dịch sodium chloride. Sử dụng chiến lược thiết kế thực nghiệm, độ pH, nồng độ chloride, nồng độ SDS/CTAB và nhiệt độ đã được tối ưu hóa thông qua việc thực hiện chỉ 30 thí nghiệm. Giá trị tối ưu của mỗi yếu tố đã được lấy từ ma trận thiết kế thí nghiệm dựa trên giá trị log I_corr thấp nhất được tính toán cho từng điều kiện thí nghiệm. Các đồ thị bề mặt 3D của phản ứng điện hóa (log I_corr) so với từng yếu tố đã được xây dựng. Các điều kiện tối ưu, trong đó log I_corr thấp nhất có thể đạt được, được tìm thấy như sau: pH 12, [Cl−] ≈ 1 M, [SDS] ≈ 200 ppm, [CTAB] ≈ 20 ppm, và T ≈ 10 °C.
Từ khóa
#ăn mòn #ức chế ăn mòn #sodium dodecyl sulfate #cetyltrimethyl ammonium bromide #thép carbon #thiết kế thực nghiệm #điện hóaTài liệu tham khảo
R.F. Godec and V. Dolecek, A Effect of Sodium Dodecylsulfate on the Corrosion of Copper in Sulphuric Acid Media, Colloids Surf. A, 2004, 244, p 73–76
M.A. Migahed, M. Abd-El-Raouf, M. Al-Sabagh, and H.M. Abd-El-Bary, Effectiveness of Some Non Ionic Surfactants as Corrosion Inhibitors for Carbon Steel Pipelines in Oil Fields, Electrochim. Acta, 2005, 50, p 4683–4689
S.A.A. El-Maksoud, The Effect of Hexadecyl Pyridinium Bromide and Hexadecyl Trimethyl Ammonium Bromide on the Behavior of Iron and Copper in Acidic Solutions, J. Electroanal. Chem., 2004, 565, p 321–328
X. Li, S. Deng, G. Mu, H. Fu, and F. Yang, Inhibition Effect of Nonionic Surfactant on the Corrosion of Cold Rolled Steel in Hydrochloric Acid, Corros. Sci., 2008, 50, p 420–430
Q. Zhang, Z. Gao, F. Xu, and X. Zou, Adsorption and Corrosion Inhibitive Properties of Gemini Surfactants in the Series of Hexanediyl-1,6-Bis-(Diethyl Alkyl Ammonium Bromide) on Aluminium in Hydrochloric Acid Solution, Colloids Surf. A, 2011, 380, p 191–200
S. Javadian, A. Yousefia, and J. Neshati, Synergistic Effect of Mixed Cationic and Anionic Surfactants on The corrosion Inhibitor Behavior of Mild Steel in 3.5% NaCl, Appl. Surf. Sci., 2013, 285, p 674–681
A. Yousefi, S. Javadian, and J. Neshati, A New Approach to Study the Synergistic Inhibition Effect of Cationic and Anionic Surfactants on the Corrosion of Mild Steel in HCl Solution, Ind. Eng. Chem. Res., 2014, 53, p 5475–5489
M. Mobin, M. Parveen, and M.Z.A. Rafiquee, Synergistic Effect of Sodium Dodecyl Sulfate and Cetyltrimethyl Ammonium Bromide on the Corrosion Inhibition Behavior of l-Methionine on Mild Steel in Acidic Medium, Arab. J. Chem., 2013, doi:10.1016/j.arabjc.2013.04.006
M.R. Popović, G.V. Popović, and D.D. Agbaba, The Effects of Anionic, Cationic, and Nonionic Surfactants on Acid—Base Equilibria of ACE Inhibitors, J. Chem. Eng. Data, 2013, 58, p 2567–2573
S. Rajendran, S.M. Reenkala, N. Anthony, and R. Ramaraj, Synergistic Corrosion Inhibition by the Sodium Dodecylsulphate—Zn2+ System, Corros. Sci., 2002, 44, p 2243–2252
A. Lalitha, S. Ramesh, and S. Rajeswari, Surface Protection of Copper in Acid Medium by Azoles and Surfactants, Electrochim. Acta, 2005, 51, p 47–55
M. Baghalha and M. Kamal-Ahmadi, Copper Corrosion in Sodium Dodecyl Sulphate Solutions and Carbon Nanotube Nanofluids: A Modified Koutecky-Levich Equation to Model the Agitation Effect, Corros. Sci., 2011, 53, p 4241–4247
H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Impedance Spectroscopic Study of Corrosion Inhibition of Copper by Surfactants in the Acidic Solutions, Corros. Sci., 2003, 45, p 867–882
K. Robert Lange, Ed., Surfactants: A Practical Handbook, 3rd ed., Hanser Gardner Publishers, Munich, 1999
M.A. Malik, M.A. Hashim, F. Nabi, S.A. AL-Thabaiti, and Z. Khan, Anti-Corrosion Ability of Surfactants: A Review, Int. J. Electrochem. Sci., 2011, 6, p 1927–1948
G.K. Gomma, Corrosion of Low-Carbon Steel in Sulphuric Acid Solution in Presence of Pyrazole-Halides Mixture, Mater. Chem. Phys., 1998, 55, p 241–246
E.E. Oguzie, B.N. Okolue, E.E. Ebenso, G.N. Onuohaa, and A.I. Onuchukwua, Evaluation of the Inhibitory Effect of Methylene Blue Dye on the Corrosion of Aluminium in Hydrochloric Acid, Mater. Chem. Phys., 2004, 87, p 394–401
E.E. Ebenso, Synergistic Effect of Halide Ions on the Corrosion Inhibition of Aluminium in H2SO4 Using 2-acetylphenothiazine, Mater. Chem. Phys., 2003, 79, p 58–70
E.E. Oguzie, C. Unaegbu, C.E. Ogukwe, B.N. Okolue, and A.I. Onuchukwu, Inhibition of Mild Steel Corrosion in Sulphuric Acid Using Indigo Dye and Synergistic Halide Additives, Mater. Chem. Phys., 2004, 84, p 363–368
H. Kanoh, Q. Feng, Y. Miyai, and K. Ooi, Equilibrium Potentials of Spinel-Type Manganese Oxide in Aqueous Solutions, J. Electrochem. Soc., 1993, 140, p 3162–3166
G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis and Model Building, Wiley, New York, 1978
D. D. Stephan, J. Werner, R. P. Yeater, Essential Regression and Experimental Design for Chemist and Engineers, MS Excel Add in Software Package, 1998-2001. http://www.jowerner.homepage.t-online.de/ERPref.html Accessed 20 Apr 2015
I. Bulacov, J. Jirkovsky, M. Muller, and R.B. Heimann, Induction Plasma-Sprayed Photocatalytically Active Titania Coatings and Their Characterisation by Micro-Raman Spectroscopy, Surf. Coat. Technol., 2006, 201, p 255–264
H. Ashassi-Sorkhabi and E. Asghari, Influence of Flow on the Corrosion Inhibition of St52-3 Type Steel by Potassium Hydrogen-Phosphate, Corros. Sci., 2009, 51, p 1828–1835
J.W. Oldfield, Galvanic Corrosion, H.P. Hack, Ed., American Society for Testing and Materials (ASTM), Philadelphia, 1988, p 5–22
X. Wang, H. Yang, and F. Wang, Inhibition Performance of a Gemini Surfactant and its co-Adsorption Effect with Halides on Mild Steel in 0.25M H2SO4 Solution, Corros. Sci., 2012, 55, p 145–152
F. Arjmand and A. Adriaens, Electrochemical Quantification of Copper Based Alloys Using Voltammetry of Microparticles: Optimization of the Experimental Conditions, J. Solid State Electrochem., 2012, 16, p 535–543
F.Y. Ma, Corrosive Effects of Chlorides on Metals, Pitting Corrosion, N. Bensalah, Ed., InTech, 2012, p 7–178
A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and E. Matykins, Pitting Corrosion Behaviour of Austenitic Stainless Steels-Combining Effects of Mn and Mo Additions, Corros. Sci., 2008, 50, p 1796–1806
E. McCafferty, Introduction to Corrosion Science, Springer Science + Business Media, New York, 2010
T.Y. Soror and M.A. El-Ziady, Effect of Cetyl Trimethyl Ammonium Bromide on the Corrosion of Carbon Steel in Acids, Mater. Chem. Phys., 2002, 77, p 697–703
R. Atkin, V.S.J. Craig, E.J. Wanless, and S. Biggs, Mechanism of Cationic Surfactant Adsorption at the Solid-Aqueous Interface, Adv. Colloid Interface Sci., 2003, 103, p 219–304
A. Khamis, M.M. Saleh, M.I. Awad, and B.E. El-Anadouli, Inhibitory Action of Quaternary Ammonium Bromide on Mild Steel and Synergistic Effect with Other Halide Ions in 0.5M H2SO4, J. Adv. Res., 2014, 5, p 637–646
E. McCafferty, Relationship Between the Isoelectric Point (pHpzc) and the Potential of Zero Charge (Epzc) for Passive Metals, Electrochim. Acta, 2010, 55, p 1630–1637