Investigation of photon interaction parameters of polymeric materials using Monte Carlo simulation

Chinese Journal of Physics - Tập 60 - Trang 709-719 - 2019
Amandeep Sharma1, Bhajan Singh2, B.S. Sandhu2
1Department of Physics, Akal University Talwandi Sabo, Bathinda 151302, India
2Physics Department, Punjabi University, Patiala 147002, India

Tài liệu tham khảo

Battistoni, 2015, Overview of the FLUKA code, Annal. Nucl. Ener., 82, 10, 10.1016/j.anucene.2014.11.007 Ballarini, 2007, The physics of the FLUKA code: recent developments, Advanc. In Space Resear., 40, 1339, 10.1016/j.asr.2007.05.031 Bohlen, 2014, The FLUKA Code: developments and challenges for high energy and medical applications, Nucl. Data Sheets, 120, 211, 10.1016/j.nds.2014.07.049 Collamati, 2016, 19 Bazo, 2018, Testing FLUKA on neutron activation of si and ge at nuclear research reactor using gamma spectroscopy, Nucl. Instrum. Meth. Phys. Res. A, 885, 1, 10.1016/j.nima.2017.12.042 Berger, 2010 Medhat, 2014, Analysis of photon interaction parameters as function of soil composition, J Radio. Nucl. Chem., 300, 1105, 10.1007/s10967-014-3028-y Medhat, 2014, Mass attenuation coefficients of composite materials by Geant4, XCOM and experimental data: comparative study, Radiat. Eff. Defects Solids, 169, 800, 10.1080/10420150.2014.950264 Hubbell, 2006, Review and history of photon cross section calculations, Phys. Med. Biol., 51, 245, 10.1088/0031-9155/51/13/R15 Kurudirek, 2017, Heavy metal borate glasses: potential use for radiation shielding, J. Alloys Comp, 727, 1227, 10.1016/j.jallcom.2017.08.237 Ersundu, 2018, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Progr. Nucl. Ener., 104, 280, 10.1016/j.pnucene.2017.10.008 Sakar, 2019, Leaded brass alloys for gamma-ray shielding applications, Radiat. Phys. Chem., 159, 64, 10.1016/j.radphyschem.2019.02.042 Singh, 2015, Determination of mass attenuation coefficient for some polymers using monte carlo simulation, Vacuum, 119, 284, 10.1016/j.vacuum.2015.06.006 Medhat, 2015, Determination of lead and radioactivity in cosmetics products: hazard assessment, Nucl. Technol. Radiat. Prot., 30, 219, 10.2298/NTRP1503219M Nambiar, 2012, Polymer-Composite materials for radiation protection, ACS Appl. Mater. Interfaces, 4, 5717, 10.1021/am300783d Mirji, 2017, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies, Radiat. Phys. Chem., 135, 32, 10.1016/j.radphyschem.2017.03.001 Brown, 2008, Radiological properties of the PRESAGE and PAGAT polymer dosimeters, Appl. Radiat. Isot., 66, 1970, 10.1016/j.apradiso.2008.06.005 Sharp, 2005, Randomized trial on two types of thermoplastic masks for patient immobilization during radiation therapy for head and neck cancer, Radiat. Oncol., 61, 250 Singh, 2014, Assessment of methods for estimation of effective atomic numbers of common human organs and tissue substitutes: waxes, plastics and polymers, Radioprotection, 49, 115, 10.1051/radiopro/2013090 Kucuk, 2013, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers, Radiat. Protect. Dosimet., 153, 127, 10.1093/rpd/ncs091 Mann, 2015, Shielding behavior of some polymer and plastic materials for gamma-rays, Radiat. Phys. Chem., 106, 247, 10.1016/j.radphyschem.2014.08.005 Sayyed, 2016, Investigation of shielding parameters for smart polymers, Chinese J. Phys., 54, 408, 10.1016/j.cjph.2016.05.002 More, 2017, Detection of new polymer materials as gamma-ray-shielding materials, Radiat. Eff. Defects Solids, 172, 469, 10.1080/10420150.2017.1336765 Al-Hamarneh, 2017, Determination of gamma-ray parameters for polyethylene glycol of different molecular weights, Nucl. Sci. Tech., 28, 1 Kacal, 2019, Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl. Engin. Tech., 51, 818, 10.1016/j.net.2018.11.011 Singh, 2018, Energy dependence of radiation interaction parameters of some organic compounds, Radiat. Phys. Chem., 145, 80, 10.1016/j.radphyschem.2017.12.020 A. Ferrari, P.R. Sala, A. Fasso et al., FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773. Mark, 2007, TVF-NMCRC-A powerful program for writing and executing simulation inputs for the FLUKA monte carlo code system, Nucl. Instrum. Meth. Phys. Res. A, 572, 929, 10.1016/j.nima.2006.12.007 Sharma, 2019, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results Phys., 13, 10.1016/j.rinp.2019.102199 Vlachoudis, 2009, FLAIR: a powerful but user friendly graphical interface for FLUKA Knoll, 2010, 47 Akkas, 2016, Determination of the tenth and half value layer thickness of concrete with different densities, Acta Phys. Pol. A., 129, 770, 10.12693/APhysPolA.129.770 Singh, 2010, A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54keV gamma photons, Nucl. Instrum. Meth. Phys. Res. A, 619, 63, 10.1016/j.nima.2010.01.012 Gerward, 2004, WinXCom - a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653, 10.1016/j.radphyschem.2004.04.040 Clough, 1990, Stabilizer additives in ionizing radiation environments under oxidizing conditions, Polym. Degrad. Stab., 30, 309, 10.1016/0141-3910(90)90084-K