Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu hoạt tính quang xúc tác của các hạt nano TiO2 tổng hợp bằng kỹ thuật sol-gel
Tóm tắt
Các hạt nano TiO2 pha anatase đã được tổng hợp bằng phương pháp sol-gel sử dụng titanium(IV) butoxide làm nguyên liệu khởi đầu. pH của dung dịch được duy trì bằng cách thêm HNO3 và NaOH. Bột thu được đã được xử lý nhiệt ở 350 °C trong 2 giờ. Nghiên cứu XRD cho thấy kích thước tinh thể và độ tinh thể của mẫu tăng lên theo pH của dung dịch. Quang phổ Raman xác nhận sự thống trị của pha anatase của TiO2. Nghiên cứu hình thái của các mẫu được thực hiện bằng kính hiển vi điện tử quét (SEM). Kích thước của các mẫu đã chuẩn bị được tính toán bằng XRD và xác nhận bởi phân tích TEM. Băng năng lượng được tính toán bằng quang phổ hấp thụ quang học và được phát hiện giảm khi pH của dung dịch tăng. Hoạt tính phân hủy quang học của thuốc nhuộm Indigo Carmine (IC) dưới ánh sáng khả kiến được thực hiện bởi các hạt nano TiO2 đã tổng hợp. Sự loại bỏ thuốc nhuộm Indigo Carmine và mức độ khoáng hóa sau khi phân hủy quang học đã được nghiên cứu bằng phân tích HPLC và TOC tương ứng.
Từ khóa
#TiO2 #hạt nano #sol-gel #hoạt tính quang xúc tác #Indigo Carmine #phân hủy quang họcTài liệu tham khảo
Castro-Beltrán, A., Luque, P.A., Garrafa-Gálvez, H.E., et al.: Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and methylene blue degradation. Optik (Stuttg) 157, 890–894 (2018). https://doi.org/10.1016/j.ijleo.2017.11.185
Munishwar, S.R., Pawar, P.P., Janbandhu, S.Y., Gedam, R.S.: Highly stable CdS quantum dots embedded in glasses and its application for inhibition of bacterial colonies. Opt Mater (Amst) 99, 109590 (2020). https://doi.org/10.1016/j.optmat.2019.109590
Nidheesh, P.V., Gandhimathi, R., Ramesh, S.T.: Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20, 2099–2132 (2013). https://doi.org/10.1007/s11356-012-1385-z
Gaya, U.I., Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9, 1–12 (2008). https://doi.org/10.1016/j.jphotochemrev.2007.12.003
Sorbiun, M., Shayegan Mehr, E., Ramazani, A., Taghavi Fardood, S.: Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (Jaft) and comparing their photocatalytic degradation of Basic Violet 3. Int J Environ Res 12, 29–37 (2018). https://doi.org/10.1007/s41742-018-0064-4
Munishwar, S.R., Pawar, P.P., Janbandhu, S.Y., Gedam, R.S.: Growth of CdSSe quantum dots in borosilicate glass by controlled heat treatment for band gap engineering. Opt Mater (Amst) 86, 424–432 (2018). https://doi.org/10.1016/j.optmat.2018.10.040
Buraso, W., Lachom, V., Siriya, P., Laokul, P.: Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Express. 5, 1–10 (2018). https://doi.org/10.1088/2053-1591/aadbf0
Dubey, R.S.: Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett 215, 312–317 (2018). https://doi.org/10.1016/j.matlet.2017.12.120
Sanitnon, P., Chiarakorn, S., Chawengkijwanich, C., et al.: Synergistic effects of zirconium and silver co-dopants in TiO2 nanoparticles for photocatalytic degradation of an organic dye and antibacterial activity. J Aust Ceram Soc 56, 579–590 (2020). https://doi.org/10.1007/s41779-019-00368-w
Valencia, S., Marín, J.M., Restrepo, G.: Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater Sci J 4, 9–14 (2010). https://doi.org/10.2174/1874088X01004020009
Hou, J., Yang, X., Lv, X., et al.: Controlled synthesis of TiO2 mesoporous microspheres via chemical vapor deposition. J Alloys Compd 511, 202–208 (2012). https://doi.org/10.1016/j.jallcom.2011.09.032
Gayathri, S., Kottaisamy, M., Ramakrishnan, V.:Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Adv. 5, 127219 (2015). https://doi.org/10.1063/1.4938544
Guimarães, J.L., Abbate, M., Betim, S.B., Alves, M.C.M.: Preparation and characterization of TiO2 and V2O5 nanoparticles produced by ball-milling. J Alloys Compd 352, 16–20 (2003). https://doi.org/10.1016/S0925-8388(02)01112-X
Haque, F.Z., Nandanwar, R., Singh, P.: Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik (Stuttg) 128, 191–200 (2017). https://doi.org/10.1016/j.ijleo.2016.10.025
Tho, N.T., Thi, C.M., Van Hieu, L., Van Viet, P.: Visible-light-driven photocatalysis for methylene blue degradation and hydrogen evolution reaction: a case of black TiO2 nanotube arrays. J Aust Ceram Soc 56, 849–857 (2020). https://doi.org/10.1007/s41779-019-00405-8
Thapa, R., Maiti, S., Rana, T.H., et al.: Anatase TiO 2 nanoparticles synthesis via simple hydrothermal route: degradation of Orange II, Methyl Orange and Rhodamine B. J Mol Catal A Chem 363–364, 223–229 (2012). https://doi.org/10.1016/j.molcata.2012.06.013
Sathiyan, K., Bar-Ziv, R., Mendelson, O., Zidki, T.: Controllable synthesis of TiO2 nanoparticles and their photocatalytic activity in dye degradation. Mater Res Bull 126, 110842 (2020). https://doi.org/10.1016/j.materresbull.2020.110842
Ranjbar, P.Z., Ayati, B., Ganjidoust, H.: Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO 2 nanoparticles. J Environ Sci (China) 79, 213–224 (2019). https://doi.org/10.1016/j.jes.2018.06.012
Tayeb, A.M., Hussein, D.S.: Synthesis of TiO2 nanoparticles and their photocatalytic activity for Methylene Blue. Am J Nanomater 3, 57–6 (2015). https://doi.org/10.12691/ajn-3-2-2
Subha, P.P., Jayaraj, M.K.: Solar photocatalytic degradation of methyl orange dye using TiO2 nanoparticles synthesised by sol–gel method in neutral medium. J Exp Nanosci 10, 1106–1115 (2015). https://doi.org/10.1080/17458080.2014.969338
Sood, S., Kumar, S., Umar, A., et al.: TiO2 quantum dots for the photocatalytic degradation of indigo carmine dye. J Alloys Compd 650, 193–198 (2015). https://doi.org/10.1016/j.jallcom.2015.07.164
Gautam, A., Kshirsagar, A., Biswas, R., et al.: Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RSC Adv 6, 2746–2759 (2016). https://doi.org/10.1039/c5ra20861k
Vinu, R., Akki, S.U., Madras, G.: Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J Hazard Mater 176, 765–773 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.101
Neto, J.S.G., Satyro, S., Saggioro, E.M., Dezotti, M.: Investigation of mechanism and kinetics in the TiO2 photocatalytic degradation of Indigo Carmine dye using radical scavengers. Int J Environ Sci Technol 18, 163–172 (2021). https://doi.org/10.1007/s13762-020-02842-6
Karami, A.: Synthesis of TiO2 nano powder by the sol-gel method and its use as a photocatalyst. J Iran Chem Soc 7, 154–160 (2010). https://doi.org/10.1007/bf03246194
Jose, S.K.M.: Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes. Appl. Phys. A. 123(8), 1–10 (2017). https://doi.org/10.1007/s00339-017-1121-0
Janbandhu, S.Y., Joshi, A., Munishwar, S.R., Gedam, R.S.: CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst. Appl. Surf. Sci. 497, (2019). https://doi.org/10.1016/j.apsusc.2019.143758
Mahshid, S., Askari, M., Ghamsari, M.S.: Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189, 296–300 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.040
Tang, H., Berger, H., Schmid, P.E., et al.: Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87, 847–850 (1993). https://doi.org/10.1016/0038-1098(93)90427-O
Ohsaka, T., Izumi, F., Fujiki, Y.: Raman spectrum of anatase. TiO 7, 321–324 (1978)
Munishwar, S.R., Pawar, P.P., Gedam, R.S.: Influence of electron-hole recombination on optical properties of boro-silicate glasses containing CdS quantum dots. J Lumin 181, 367–373 (2017). https://doi.org/10.1016/j.jlumin.2016.09.045
Janbandhu, S.Y., Munishwar, S.R., Gedam, R.S.: Synthesis, characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses. Appl Surf Sci 449, 221–227 (2018). https://doi.org/10.1016/j.apsusc.2018.02.065
Tsega, M., Dejene, F.B.: Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 3, e00246 (2017). https://doi.org/10.1016/j.heliyon.2017.e00246
Zhang, J., Yang, Y., Liu, W.: Preparation, characterization, and activity evaluation of CuO/F-TiO 2 photocatalyst. Int. J. Photoenergy. 2012, 1–9 (2012). https://doi.org/10.1155/2012/139739
Saraf, L.V., Patil, S.I., Ogale, S.B., et al.: Synthesis of nanophase TiO2 by ion beam sputtering and cold condensation technique. Int J Mod Phys B 12, 2635–2647 (1998). https://doi.org/10.1142/S0217979298001538
Serpone, N., Lawless, D., Khairutdinov, R.: Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J Phys Chem 99, 16646–16654 (1995). https://doi.org/10.1021/j100045a026
Forss, L., Schubnell, M.: Temperature dependence of the luminescence of TiO2 powder. Appl Phys B Photophysics Laser Chem 56, 363–366 (1993). https://doi.org/10.1007/BF00324533
Munishwar, S.R., Pawar, P.P., Ughade, S., Gedam, R.S.: Size dependent effect of electron-hole recombination of CdS quantum dots on emission of Dy3+ ions in boro-silicate glasses through energy transfer. J Alloys Compd 725, 115–122 (2017). https://doi.org/10.1016/j.jallcom.2017.07.146
Maurya, A., Chauhan, P., Mishra, S.K., Srivastava, R.K.: Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J Alloys Compd 509, 8433–8440 (2011). https://doi.org/10.1016/j.jallcom.2011.05.108
Komaraiah, D., Radha, E., Kalarikkal, N., et al.: Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram Int 45, 25060–25068 (2019). https://doi.org/10.1016/j.ceramint.2019.03.170
Mathpal, M.C., Tripathi, A.K., Singh, M.K., et al.: Effect of annealing temperature on Raman spectra of TiO2 nanoparticles. Chem Phys Lett 555, 182–186 (2013). https://doi.org/10.1016/j.cplett.2012.10.082
Saha, A., Moya, A., Kahnt, A., et al.: Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO2 nanofibres. Nanoscale 9, 7911–7921 (2017). https://doi.org/10.1039/c7nr00759k
Janbandhu, S.Y., Munishwar, S.R., Sukhadeve, G.K., Gedam, R.S.: Effect of annealing time on optical properties of CdS QDs containing glasses and their application for degradation of methyl orange dye. Mater Charact 152, 230–238 (2019). https://doi.org/10.1016/j.matchar.2019.04.027
Rani, S., Aggarwal, M., Kumar, M., et al.: Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene. Water Sci 30, 51–60 (2016). https://doi.org/10.1016/j.wsj.2016.04.001
Oppong, S.O.B., Anku, W.W., Shukla, S.K., et al.: Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J Sol-Gel Sci Technol 80, 38–49 (2016). https://doi.org/10.1007/s10971-016-4062-8