Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes

Chinese Journal of Catalysis - Tập 44 - Trang 127-138 - 2023
Qixian Xie1, Dan Ren2, Lichen Bai3, Rile Ge4, Wenhui Zhou4, Lu Bai5, Wei Xie5, Junhu Wang4, Michael Grätzel2, Jingshan Luo1
1Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
2Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
3Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
4Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
5Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China

Tài liệu tham khảo

Roy, 2018, Nat. Catal., 1, 820, 10.1038/s41929-018-0162-x Zhang, 2017, Adv. Energy Mater., 7, 1602547, 10.1002/aenm.201602547 Zhu, 2019, Angew. Chem. Int. Ed., 58, 1252, 10.1002/anie.201802923 Zhang, 2016, ACS Catal., 6, 580, 10.1021/acscatal.5b02291 Li, 2016, >Nat. Mater., 15, 48 Park, 2019, Nano Energy, 55, 49, 10.1016/j.nanoen.2018.10.017 Qi, 2015, Adv. Sci., 2, 1500199, 10.1002/advs.201500199 Lu, 2015, Nat. Commun., 6, 6616, 10.1038/ncomms7616 Zhang, 2018, Nat. Commun., 9, 381, 10.1038/s41467-017-02429-9 J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui, B. Tang, J. Mater. Chem. A, 2018, 6, 16121–16129. Chen, 2019, >Adv. Mater., 31, 1903909 Zhang, 2019, Adv. Energy Mater., 9, 1900881, 10.1002/aenm.201900881 Liang, 2020, Energy Environ. Sci., 13, 86, 10.1039/C9EE02388G Andronescu, 2017, Angew. Chem. Int. Ed., 56, 11258, 10.1002/anie.201705385 Gong, 2015, Nano Res., 8, 23, 10.1007/s12274-014-0591-z Anantharaj, 2017, Nano Energy, 39, 30, 10.1016/j.nanoen.2017.06.027 Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c Xu, 2016, Nat. Commun., 7, 12324, 10.1038/ncomms12324 Han, 2015, J. Mater. Chem. A, 3, 16348, 10.1039/C5TA03394B Luo, 2016, Adv. Energy Mater., 6, 1600100, 10.1002/aenm.201600100 Luo, 2014, Science, 345, 1593, 10.1126/science.1258307 Dionigi, 2016, Adv. Energy Mater., 6, 1600621, 10.1002/aenm.201600621 Görlin, 2017, J. Am. Chem. Soc., 139, 2070, 10.1021/jacs.6b12250 Smith, 2015, Chem. Commun., 51, 5261, 10.1039/C4CC08670H Zhang, 2017, Nano Energy, 38, 553, 10.1016/j.nanoen.2017.06.032 Dresp, 2019, ACS Energy Lett., 4, 933, 10.1021/acsenergylett.9b00220 Li, 2020, J. Am. Chem. Soc., 142, 7276, 10.1021/jacs.0c00122 Görlin, 2016, Catal. Today, 262, 65, 10.1016/j.cattod.2015.10.018 Trześniewski, 2015, J. Am. Chem. Soc., 137, 15112, 10.1021/jacs.5b06814 Zhang, 2021, Chem. Soc. Rev., 50, 4804, 10.1039/D0CS01456G Shah, 2022, J. Electrochem., 28, 2108541 Corrigan, 1987, J. Phys. Chem., 91, 5009, 10.1021/j100303a024 Chen, 2015, J. Am. Chem. Soc., 137, 15090, 10.1021/jacs.5b10699 Kuang, 2021, J Energy Chem., 57, 212, 10.1016/j.jechem.2020.09.014 Yang, 2017, ACS Appl. Mater. Inter., 9, 19502, 10.1021/acsami.7b01637 Zhang, 2017, J. Mater. Chem. A, 5, 13329, 10.1039/C7TA03163G Dong, 2019, Appl. Catal. B, 263, 118343, 10.1016/j.apcatb.2019.118343 Zheng, 2018, Nat. Chem., 10, 149, 10.1038/nchem.2886 Zhang, 2018, J. Am. Chem. Soc., 140, 3876, 10.1021/jacs.8b00752 Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397 Demourgues-Guerlou, 1995, J Solid State Chem., 114, 6, 10.1006/jssc.1995.1002 Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d Anantharaj, 2021, ACS Energy Lett., 6, 1607, 10.1021/acsenergylett.1c00608 Zhang, 2018, Adv. Funct. Mater., 28, 1706847, 10.1002/adfm.201706847 Zhou, 2019, Angew. Chem. Int. Ed., 131, 746, 10.1002/ange.201809689 Merrill, 2014, J. Electroanal. Chem., 717, 177, 10.1016/j.jelechem.2014.01.022 Lee, 2020, Angew. Chem. Int. Ed., 59, 8072, 10.1002/anie.201915803 Sediva, 2019, Adv. Mater., 31, 1902493, 10.1002/adma.201902493 Hunter, 2016, Energy Environ. Sci., 9, 1734, 10.1039/C6EE00377J Zhou, 2018, Nano Res., 11, 1358, 10.1007/s12274-017-1750-9 Qiu, 2019, Energy Environ. Sci., 12, 572, 10.1039/C8EE03282C Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s Payne, 2012, J. Electron. Spectrosc., 185, 159, 10.1016/j.elspec.2012.06.008 Zhou, 2018, ACS Catal., 8, 5382, 10.1021/acscatal.8b01332 Tu, 2021, ACS Appl. Energy Mater., 4, 4630, 10.1021/acsaem.1c00262 Gao, 2020, Angew. Chem. Int. Ed., 59, 6213, 10.1002/anie.201915671 Bai, 2021, Angew. Chem. Int. Ed., 60, 3095, 10.1002/anie.202011388 Doyle, 2013, Phys. Chem. Chem. Phys., 15, 13737, 10.1039/c3cp51213d Klaus, 2015, J. Phys. Chem. C, 119, 7243, 10.1021/acs.jpcc.5b00105 Corby, 2020, Sustain. Energy Fuels, 4, 5024, 10.1039/D0SE00977F Kwon, 2021, Adv. Energy Mater., 11, 2100624, 10.1002/aenm.202100624 Francàs, 2019, Nat. Commun., 10, 5208, 10.1038/s41467-019-13061-0 Francàs, 2021, Chem. Sci., 12, 7442, 10.1039/D0SC06429G Tao, 2019, Joule, 3, 1498, 10.1016/j.joule.2019.03.012 Cui, 2017, Angew. Chem. Int. Ed., 129, 4559, 10.1002/ange.201701149 Zhang, 2021, Chin. J. Catal., 42, 1253, 10.1016/S1872-2067(20)63681-6 Li, 2021, J. Am. Chem. Soc., 143, 14613, 10.1021/jacs.1c05204 Ren, 2021, Nat. Commun., 12, 2608, 10.1038/s41467-021-22865-y Bai, 2021, Nat. Energy, 6, 1054, 10.1038/s41560-021-00925-3 Görlin, 2016, J. Am. Chem. Soc., 138, 5603, 10.1021/jacs.6b00332 Fidelsky, 2017, Phys. Chem. Chem. Phys., 19, 7491, 10.1039/C6CP08590C Hao, 2021, J. Am. Chem. Soc., 143, 1493, 10.1021/jacs.0c11307 Stevens, 2017, J. Am. Chem. Soc., 139, 11361, 10.1021/jacs.7b07117 Burke, 2015, Chem. Mater., 27, 7549, 10.1021/acs.chemmater.5b03148 Song, 2018, J. Am. Chem. Soc., 140, 7748, 10.1021/jacs.8b04546 Zhang, 2021, Nano Lett., 21, 4795, 10.1021/acs.nanolett.1c01335