Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes
Tài liệu tham khảo
Roy, 2018, Nat. Catal., 1, 820, 10.1038/s41929-018-0162-x
Zhang, 2017, Adv. Energy Mater., 7, 1602547, 10.1002/aenm.201602547
Zhu, 2019, Angew. Chem. Int. Ed., 58, 1252, 10.1002/anie.201802923
Zhang, 2016, ACS Catal., 6, 580, 10.1021/acscatal.5b02291
Li, 2016, >Nat. Mater., 15, 48
Park, 2019, Nano Energy, 55, 49, 10.1016/j.nanoen.2018.10.017
Qi, 2015, Adv. Sci., 2, 1500199, 10.1002/advs.201500199
Lu, 2015, Nat. Commun., 6, 6616, 10.1038/ncomms7616
Zhang, 2018, Nat. Commun., 9, 381, 10.1038/s41467-017-02429-9
J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui, B. Tang, J. Mater. Chem. A, 2018, 6, 16121–16129.
Chen, 2019, >Adv. Mater., 31, 1903909
Zhang, 2019, Adv. Energy Mater., 9, 1900881, 10.1002/aenm.201900881
Liang, 2020, Energy Environ. Sci., 13, 86, 10.1039/C9EE02388G
Andronescu, 2017, Angew. Chem. Int. Ed., 56, 11258, 10.1002/anie.201705385
Gong, 2015, Nano Res., 8, 23, 10.1007/s12274-014-0591-z
Anantharaj, 2017, Nano Energy, 39, 30, 10.1016/j.nanoen.2017.06.027
Trotochaud, 2014, J. Am. Chem. Soc., 136, 6744, 10.1021/ja502379c
Xu, 2016, Nat. Commun., 7, 12324, 10.1038/ncomms12324
Han, 2015, J. Mater. Chem. A, 3, 16348, 10.1039/C5TA03394B
Luo, 2016, Adv. Energy Mater., 6, 1600100, 10.1002/aenm.201600100
Luo, 2014, Science, 345, 1593, 10.1126/science.1258307
Dionigi, 2016, Adv. Energy Mater., 6, 1600621, 10.1002/aenm.201600621
Görlin, 2017, J. Am. Chem. Soc., 139, 2070, 10.1021/jacs.6b12250
Smith, 2015, Chem. Commun., 51, 5261, 10.1039/C4CC08670H
Zhang, 2017, Nano Energy, 38, 553, 10.1016/j.nanoen.2017.06.032
Dresp, 2019, ACS Energy Lett., 4, 933, 10.1021/acsenergylett.9b00220
Li, 2020, J. Am. Chem. Soc., 142, 7276, 10.1021/jacs.0c00122
Görlin, 2016, Catal. Today, 262, 65, 10.1016/j.cattod.2015.10.018
Trześniewski, 2015, J. Am. Chem. Soc., 137, 15112, 10.1021/jacs.5b06814
Zhang, 2021, Chem. Soc. Rev., 50, 4804, 10.1039/D0CS01456G
Shah, 2022, J. Electrochem., 28, 2108541
Corrigan, 1987, J. Phys. Chem., 91, 5009, 10.1021/j100303a024
Chen, 2015, J. Am. Chem. Soc., 137, 15090, 10.1021/jacs.5b10699
Kuang, 2021, J Energy Chem., 57, 212, 10.1016/j.jechem.2020.09.014
Yang, 2017, ACS Appl. Mater. Inter., 9, 19502, 10.1021/acsami.7b01637
Zhang, 2017, J. Mater. Chem. A, 5, 13329, 10.1039/C7TA03163G
Dong, 2019, Appl. Catal. B, 263, 118343, 10.1016/j.apcatb.2019.118343
Zheng, 2018, Nat. Chem., 10, 149, 10.1038/nchem.2886
Zhang, 2018, J. Am. Chem. Soc., 140, 3876, 10.1021/jacs.8b00752
Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397
Demourgues-Guerlou, 1995, J Solid State Chem., 114, 6, 10.1006/jssc.1995.1002
Friebel, 2015, J. Am. Chem. Soc., 137, 1305, 10.1021/ja511559d
Anantharaj, 2021, ACS Energy Lett., 6, 1607, 10.1021/acsenergylett.1c00608
Zhang, 2018, Adv. Funct. Mater., 28, 1706847, 10.1002/adfm.201706847
Zhou, 2019, Angew. Chem. Int. Ed., 131, 746, 10.1002/ange.201809689
Merrill, 2014, J. Electroanal. Chem., 717, 177, 10.1016/j.jelechem.2014.01.022
Lee, 2020, Angew. Chem. Int. Ed., 59, 8072, 10.1002/anie.201915803
Sediva, 2019, Adv. Mater., 31, 1902493, 10.1002/adma.201902493
Hunter, 2016, Energy Environ. Sci., 9, 1734, 10.1039/C6EE00377J
Zhou, 2018, Nano Res., 11, 1358, 10.1007/s12274-017-1750-9
Qiu, 2019, Energy Environ. Sci., 12, 572, 10.1039/C8EE03282C
Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s
Payne, 2012, J. Electron. Spectrosc., 185, 159, 10.1016/j.elspec.2012.06.008
Zhou, 2018, ACS Catal., 8, 5382, 10.1021/acscatal.8b01332
Tu, 2021, ACS Appl. Energy Mater., 4, 4630, 10.1021/acsaem.1c00262
Gao, 2020, Angew. Chem. Int. Ed., 59, 6213, 10.1002/anie.201915671
Bai, 2021, Angew. Chem. Int. Ed., 60, 3095, 10.1002/anie.202011388
Doyle, 2013, Phys. Chem. Chem. Phys., 15, 13737, 10.1039/c3cp51213d
Klaus, 2015, J. Phys. Chem. C, 119, 7243, 10.1021/acs.jpcc.5b00105
Corby, 2020, Sustain. Energy Fuels, 4, 5024, 10.1039/D0SE00977F
Kwon, 2021, Adv. Energy Mater., 11, 2100624, 10.1002/aenm.202100624
Francàs, 2019, Nat. Commun., 10, 5208, 10.1038/s41467-019-13061-0
Francàs, 2021, Chem. Sci., 12, 7442, 10.1039/D0SC06429G
Tao, 2019, Joule, 3, 1498, 10.1016/j.joule.2019.03.012
Cui, 2017, Angew. Chem. Int. Ed., 129, 4559, 10.1002/ange.201701149
Zhang, 2021, Chin. J. Catal., 42, 1253, 10.1016/S1872-2067(20)63681-6
Li, 2021, J. Am. Chem. Soc., 143, 14613, 10.1021/jacs.1c05204
Ren, 2021, Nat. Commun., 12, 2608, 10.1038/s41467-021-22865-y
Bai, 2021, Nat. Energy, 6, 1054, 10.1038/s41560-021-00925-3
Görlin, 2016, J. Am. Chem. Soc., 138, 5603, 10.1021/jacs.6b00332
Fidelsky, 2017, Phys. Chem. Chem. Phys., 19, 7491, 10.1039/C6CP08590C
Hao, 2021, J. Am. Chem. Soc., 143, 1493, 10.1021/jacs.0c11307
Stevens, 2017, J. Am. Chem. Soc., 139, 11361, 10.1021/jacs.7b07117
Burke, 2015, Chem. Mater., 27, 7549, 10.1021/acs.chemmater.5b03148
Song, 2018, J. Am. Chem. Soc., 140, 7748, 10.1021/jacs.8b04546
Zhang, 2021, Nano Lett., 21, 4795, 10.1021/acs.nanolett.1c01335