Investigation of new dyes for chromovitrectomy: preclinical biocompatibility of trisodium, orangell and methyl violet

Emmerson Badaro1, Rodrigo A Souza-Lima1, Eduardo A Novais1, Mauricio Maia1, Flávio Hirai1, Carsten H Meyer2, Michel Eid Farah1, Eduardo B Rodrigues1
1Department of Ophthalmology, Federal University of São Paulo, Sao Paulo, Brazil
2Department of Ophthalmology, University of Bonn, Bonn, Germany

Tóm tắt

To investigate the retinal toxicity by electroretinography (ERG), clinical examination and histology after intravitreal injection of biological stains in two concentrations: Trisodium (0.50 g/L and 1.00 g/L), Orangell (0.25 g/L and 1.00 g/L) and Methyl Violet (0.50 g/L and 1.00 g/L). Eighteen New-Zealand albinos rabbits were assigned in six groups (n = 3 in each group). The animals in group 1 received Trisodium in the dose of 0.50 g/L and group 2 received 1.00 g/L; Group 3 received Orangell in the dose of 0.25 g/L and group 4 received 1.00 g/L; Group 5 received Methyl Violet in the dose of 1.00 g/L and group 6 received 0.50 g/L. A volume of 0.05 mL of dye was injected in the right eyes, whereas the left eyes received the same volume of balanced salt solution (BSS) as control. ERG recordings and clinical examination were performed at baseline and seven days after intravitreal injection. The ERG responses at one week after injection were compared with baseline levels. A decrease in the post-injection amplitude of more than 50% was considered remarkable. After the 7-day follow-up, rabbits were euthanized and eye enucleated for light microscopy (LM) histological evaluation. At clinical examination by indirect ophthalmoscopy seven days after dye injection, all eyes were negative for cataract, hemorrhage, retinal detachment, and intraocular opacities. Amplitude analysis of maximum scotopic b-wave showed no significant reduction in either dye injected or control eyes. Neither dye nor BSS caused significant retinal alteration on LM at doses tested. Trisodium, Orangell and Methyl Violet can be applied in future studies in order to prove the capacity to stain preretinal tissues and vitreous without toxicity. The three dyes did not induce significant ERG amplitude reduction or LM alterations in this preliminary experimental research. Trisodium, Orangell and Methyl Violet may be potentially useful vital dyes for ocular surgery, and deserve further investigation.

Tài liệu tham khảo

Rodrigues EB, Meyer CH, Kroll P. Chromovitrectomy: a new field in vitreoretinal surgery. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2005;243(4):291–3. Burk SE, Da Mata AP, Snyder ME, Rosa Jr RH, Foster RE. Indocyanine green-assisted peeling of the retinal internal limiting membrane. Ophthalmology. 2000;107(11):2010–4. Gandorfer A, Haritoglou C, Gandorfer A, Kampik A. Retinal damage from indocyanine green in experimental macular surgery. Invest Ophthalmol Vis Sci. 2003;44(1):316–23. Maia M, Margalit E, Lakhanpal R, Tso MO, Grebe R, Torres G, et al. Effects of intravitreal indocyanine green injection in rabbits. Retina. 2004;24(1):69–79. Rodrigues EB, Meyer CH, Farah ME, Kroll P. Intravitreal staining of the internal limiting membrane using indocyanine green in the treatment of macular holes. Ophthalmologica. 2005;219(5):251–62. Teba FA, Mohr A, Eckardt C, Wong D, Kusaka S, Joondeph BC, et al. Trypan blue staining in vitreoretinal surgery. Ophthalmology. 2003;110(12):2409–12. Mennel S, Meyer CH, Tietjen A, Rodrigues EB, Schmidt JC. Patent blue: a novel vital dye in vitreoretinal surgery. Ophthalmologica. 2006;220(3):190–3. Albini TA, Abd-El-Barr MM, Carvounis PE, Iyer MN, Lakhanpal RR, Pennesi ME, et al. Long-term retinal toxicity of intravitreal commercially available preserved triamcinolone acetonide (Kenalog) in rabbit eyes. Invest Ophthalmol Vis Sci. 2007;48(1):390–5. Peyman GA, Cheema R, Conway MD, Fang T. Triamcinolone acetonide as an aid to visualization of the vitreous and the posterior hyaloid during pars plana vitrectomy. Retina. 2000;20(5):554–5. Feron EJ, Veckeneer M, Parys-Van Ginderdeuren R, Van Lommel A, Melles GR, Stalmans P. Trypan blue staining of epiretinal membranes in proliferative vitreoretinopathy. Arch Ophthalmol. 2002;120(2):141–4. Enaida H, Ishibashi T. Brilliant blue in vitreoretinal surgery. Dev Ophthalmol. 2008;42:115–25. Januschowski K, Mueller S, Spitzer MS, Schramm C, Doycheva D, Bartz-Schmidt KU, et al. Evaluating retinal toxicity of a new heavy intraocular dye, using a model of perfused and isolated retinal cultures of bovine and human origin. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2012;250(7):1013–22. Rodrigues EB, Penha FM, Farah ME, de Paula Fiod Costa E, Maia M, Dib E. Preclinical investigation of the retinal biocompatibility of six novel vital dyes for chromovitrectomy. Retina. 2009;29(4):497–510. Narayanan R, Kenney MC, Kamjoo S, Trinh TH, Seigel GM, Resende GP, et al. Trypan blue: effect on retinal pigment epithelial and neurosensory retinal cells. Invest Ophthalmol Vis Sci. 2005;46(1):304–9. Cardoso EB, Moraes-Filho M, Rodrigues EB, Maia M, Penha FM, Novais EA, et al. Investigation of the retinal biocompatibility of acid violet for chromovitrectomy. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2013;251(4):1115–21. Dib E, Rodrigues EB, Maia M, Meyer CH, Penha FM, Furlani Bde A, et al. [Vital dyes in chromovitrectomy]. Arquivos brasileiros de oftalmologia. 2009;72(6):845–50. Meyer CH. Vital dyes in vitreoretinal surgery chromovitrectomy. Preface. Dev Ophthalmol. 2008;42:11–2. Rodrigues EB, Maia M, Meyer CH, Penha FM, Dib E, Farah ME. Vital dyes for chromovitrectomy. Curr Opin Ophthalmol. 2007;18(3):179–87.