Investigation of nanomechanical and morphological properties of silane-modified halloysite clay nanotubes reinforced polycaprolactone bio-composite nanofibers by atomic force microscopy

Polymer Testing - Tập 92 - Trang 106877 - 2020
Y. Emre Bulbul1, Tevhide Uzunoglu1, Nursel Dilsiz1,2, Ertan Yildirim3, Hakan Ates4
1Department of Chemical Engineering, Graduate School of Natural and Applied Sciences, Gazi University, 06570 Ankara, Turkey
2Department of Chemical Engineering, Faculty of Engineering, Gazi University, 06570 Ankara, Turkey
3Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara, Turkey
4Department of Metallurgical and Materials Engineering, Gazi University, 06500, Ankara, Turkey

Tài liệu tham khảo

Zhu, 2019, Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration, Carbohydr. Polym. Uzal, 2017, Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al 2 O 3 nanoparticles, Separ. Purif. Technol., 187, 118, 10.1016/j.seppur.2017.06.047 Hu, 2017, Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering, Mater. Sci. Eng. C, 70, 1089, 10.1016/j.msec.2016.03.035 Mohammadi, 2016, Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers, Mater. Sci. Eng. C Eskitoros-Togay, 2018, Quercetin-loaded and unloaded electrospun membranes: synthesis, characterization and in vitro release study, J. Drug Deliv. Sci. Technol., 47, 22, 10.1016/j.jddst.2018.06.017 Chen, 2018, Electrospinning: an enabling nanotechnology platform for drug delivery and regenerative medicine, Adv. Drug Deliv. Rev., 10.1016/j.addr.2018.05.001 Pawłowska, 2020, Ultraviolet light-assisted electrospinning of core–shell fully cross-linked P(NIPAAm-co-NIPMAAm) hydrogel-based nanofibers for thermally induced drug delivery self-regulation, Adv. Mater. Interf. Thenmozhi, 2017, Electrospun nanofibers: new generation materials for advanced applications, Mater. Sci. Eng. B, 217, 36, 10.1016/j.mseb.2017.01.001 Xu, 2020, Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications, Prog. Mater. Sci. Wong, 2016, Surface morphology and mechanical response of randomly oriented electrospun nanofibrous membrane, Polym. Test., 10.1016/j.polymertesting.2016.05.020 Goh, 2018, Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water, Polym. Test., 10.1016/j.polymertesting.2018.09.026 Gestos, 2013, Tensile testing of individual glassy, rubbery and hydrogel electrospun polymer nanofibres to high strain using the atomic force microscope, Polym. Test., 10.1016/j.polymertesting.2013.02.010 Wu, 2016, Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration, Bioact. Mater., 10.1016/j.bioactmat.2016.07.001 Davidson, 2019, Cell force-mediated matrix reorganization underlies multicellular network assembly, Sci. Rep., 10.1038/s41598-018-37044-1 Croisier, 2012, Mechanical testing of electrospun PCL fibers, Acta Biomater., 10.1016/j.actbio.2011.08.015 Tan, 2005, Nanoindentation study of nanofibers, Appl. Phys. Lett., 10.1063/1.2051802 Marrese, 2017, Atomic force microscopy: a powerful tool to address scaffold design in tissue engineering, J. Funct. Biomater., 10.3390/jfb8010007 Nguyen, 2016, Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: the role of probe radius, Polymer, 10.1016/j.polymer.2016.01.080 Palacio, 2013, Depth-sensing indentation of nanomaterials and nanostructures, Mater. Char., 10.1016/j.matchar.2013.01.009 Fuhrhop, 2010 Stylianou, 2012 Wang, 2007, Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. Compos. Mater., 10.1007/s10443-006-9032-9 Li, 2002, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Char., 10.1016/S1044-5803(02)00192-4 Nakielski, 2015, Hydrogel nanofilaments via core-shell electrospinning, PloS One Jiang, 2019, Comparison of AFM nanoindentation and gold nanoparticle embedding techniques for measuring the properties of polymer thin films, Polymers Tian, 2020, Interfacial nanomechanical properties and chain segment dynamics of fibrillar silicate/elastomer nanocomposites, Compos. B Eng., 10.1016/j.compositesb.2020.108048 Butt, 2005, Force measurements with the atomic force microscope: technique, interpretation and applications, Surf. Sci. Rep., 10.1016/j.surfrep.2005.08.003 Nakajima, 2014, Nano-palpation AFM and its quantitative mechanical property mapping, Microscopy, 10.1093/jmicro/dfu009 Jee, 2010, Comparative analysis on the nanoindentation of polymers using atomic force microscopy, Polym. Test., 10.1016/j.polymertesting.2009.09.009 Neugirg, 2016, AFM-based mechanical characterization of single nanofibres, Nanoscale, 10.1039/C6NR00863A Cheng, 2008, A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy, Compos. Part A Appl. Sci. Manuf., 10.1016/j.compositesa.2008.09.007 Parvej, 2020, AFM based nanomechanical characterization of cellulose nanofibril, J. Compos. Mater., 10.1177/0021998320933955 Yilmaz, 2020, Nanomechanical characterization of electrospun biodegradable vascular scaffolds, Chem. Pap., 10.1007/s11696-020-01183-5 Mendes, 2015, Nanomechanics of electrospun phospholipid fiber, Appl. Phys. Lett., 10.1063/1.4922283 Abedalwafa, 2013, Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review, Rev. Adv. Mater. Sci., 34, 123 Karuppuswamy, 2015, Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride, Mater. Lett., 141, 180, 10.1016/j.matlet.2014.11.044 Takala, 2013, Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4°C, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.), 10.1016/j.lwt.2013.02.024 Ajili, 2009, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants, Acta Biomater., 10.1016/j.actbio.2008.12.014 Song, 2015, The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors, Carbon N. Y., 10.1016/j.carbon.2015.09.011 Wang, 2017, Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties, Int. J. Biol. Macromol., 10.1016/j.ijbiomac.2017.06.044 Huang, 2017, Silver-Decorated polymeric micelles combined with curcumin for enhanced antibacterial activity, ACS Appl. Mater. Interfaces Bulbul, 2020, Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system, Appl. Clay Sci., 186, 105430, 10.1016/j.clay.2019.105430 Qiao, 2017, Halloysite nanotubes reinforced ultrahigh molecular weight polyethylene nanocomposite films with different filler concentration and modification, Polym. Test., 10.1016/j.polymertesting.2016.11.024 Dong, 2015, Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification, Compos. Part A Appl. Sci. Manuf., 10.1016/j.compositesa.2015.05.011 Zhang, 2016, Effects of hydrogen bonding between MWCNT and PPS on the properties of PPS/MWCNT composites, RSC Adv. ying Ning, 2007, Crystallization behavior and mechanical properties of polypropylene/halloysite composites, Polymer Tang, 2012, Influences of processing methods and chemical treatments on fracture toughness of halloysite-epoxy composites, Mater. Des., 10.1016/j.matdes.2012.06.036 Liu, 2015, Morphology and properties of silica-based coatings with different functionalities for Fe3O4, ZnO and Al2O3 nanoparticles, RSC Adv. Carli, 2014, The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites, Appl. Clay Sci., 10.1016/j.clay.2013.11.032 Krishnaiah, 2017, Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties, Appl. Clay Sci., 10.1016/j.clay.2016.10.046 Liu, 2017, Cavitation in strained polyethylene/aluminium oxide nanocomposites, Eur. Polym. J. Xie, 2010, Silane coupling agents used for natural fiber/polymer composites: a review, Compos. Part A Appl. Sci. Manuf., 10.1016/j.compositesa.2010.03.005 Liu, 2017, Influence of nanoparticle surface coating on electrical conductivity of LDPE/Al2O3 nanocomposites for HVDC cable insulations, IEEE Trans. Dielectr. Electr. Insul. Lin, 2007, Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials, J. Biomech. Eng., 10.1115/1.2800826 Lin, 2007, Robust strategies for automated AFM force curve analysis-II: adhesion-influenced indentation of soft, elastic materials, J. Biomech. Eng., 10.1115/1.2800826 Ferencz, 2012, AFM nanoindentation to determine Young's modulus for different EPDM elastomers, Polym. Test., 10.1016/j.polymertesting.2012.01.003 Khunova, 2013, The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites, Express Polym. Lett., 10.3144/expresspolymlett.2013.43 Sun, 2015, Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry, RSC Adv. Pavliňáková, 2018, Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications, Mater. Sci. Eng. C, 10.1016/j.msec.2018.05.033 Yuan, 2012, Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating, Clay Clay Miner., 10.1346/CCMN.2012.0600602 Wei, 2019, Activation of natural halloysite nanotubes by introducing lanthanum oxycarbonate nanoparticles: via co-calcination for outstanding phosphate removal, Chem. Commun., 10.1039/C8CC10314C Ma, 2006, Functionalization of carbon nanotubes using a silane coupling agent, Carbon N. Y., 10.1016/j.carbon.2006.06.032 Paran, 2017, Microstructure and mechanical properties of thermoplastic elastomer nanocomposites based on PA6/NBR/HNT, Polym. Compos., 10.1002/pc.23936 Zeng, 2014, Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications, Polymer, 10.1016/j.polymer.2014.10.044 Wang, 2014, Preparation and antifouling property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes grafted with MPC via RATRP method, Desalination Huan, 2018, Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties, Biomacromolecules, 10.1021/acs.biomac.8b00023 Haider, 2018, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab. J. Chem., 10.1016/j.arabjc.2015.11.015 Shin, 2015, Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices, J. Biol. Eng., 10.1186/s13036-015-0020-1 Qi, 2010, Electrospun poly(lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release, J. Mater. Chem., 10.1039/c0jm01328e Wong, 2008, Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone), Polymer, 10.1016/j.polymer.2008.08.022 Chew, 2006, Mechanical properties of single electrospun drug-encapsulated nanofibres, Nanotechnology, 10.1088/0957-4484/17/15/045