Investigation of interleukin-2-mediated changes in blood pressure, fetal growth restriction, and innate immune activation in normal pregnant rats and in a preclinical rat model of preeclampsia

Mark Cunningham1, Lorena M. Amaral1, Nathan Campbell1, Denise C. Cornelius1, Tarek Ibrahim1, Venkata Ramana Vaka1, Babbette LaMarca2
1Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
2Division of Maternal Fetal Medicine, Department Of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, 39216, USA

Tóm tắt

AbstractTwo important clinical features of preeclampsia (PE) are hypertension and fetal growth restriction. The reduced uterine perfusion pressure (RUPP) preclinical rat model of PE exhibits both of these features. Moreover, RUPP and PE women have elevated vasoconstrictor peptide endothelin-1 (ET-1) and inflammation. Interleukin-2 (IL-2) is a cytokine that regulates NK cell activity and is elevated in miscarriage, PE, and RUPP rats. The objective of this study was to examine a role for IL-2 in NK cell activation, fetal growth restriction, and hypertension during pregnancy by either infusion of IL-2 or blockade of IL-2 (basiliximab) in normal pregnant (NP) and RUPP rats. On gestational day 14, NP and RUPP rats received low (LD), middle (MD), or high dose (HD) IL-2 (0.05, 0.10, or 0.20 ng/ml) IP or basiliximab (0.07 mg per rat) by IV infusion. On day 19, blood pressure (MAP), pup weights, and blood were collected. Basiliximab had no effect on blood pressure, however, significantly lowered NK cells and may have worsened overall fetal survival in RUPP rats. However, IL-2 LD (102 ± 4 mmHg) and IL-2 HD (105 ± 6 mmHg) significantly lowered blood pressure, ET-1, and activated NK cells compared to control RUPPs (124 ± 3 mmHg,p< 0.05). Importantly, IL-2 in RUPP rats significantly reduced fetal weight and survival. These data indicate that although maternal benefits may have occurred with low dose IL-2 infusion, negative effects were seen in the fetus. Moreover, inhibition of IL-2 signaling did not have favorable outcome for the mother or fetus.

Từ khóa


Tài liệu tham khảo

LaMarca B, et al. Placental ischemia and resultant phenotype in animal models of preeclampsia. Curr Hypertens Rep. 2016;18(5):38.

LaMarca B, et al. Identifying immune mechanisms mediating the hypertension during preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2016;311(1):R1–9.

Amaral LM, et al. Preeclampsia: long-term consequences for vascular health. Vasc Health Risk Manag. 2015;11:403–15.

Brown MC, et al. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28(1):1–19.

Li J, LaMarca B, Reckelhoff JF. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol. 2012;303(1):H1–8.

Elfarra J, et al. Natural killer cells mediate pathophysiology in response to reduced uterine perfusion pressure. Clin Sci (Lond). 2017;131(23):2753–62.

Cornelius DC, et al. Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT1-AA in response to adoptive transfer of CD4+ T lymphocytes from RUPP rats. Am J Physiol Regul Integr Comp Physiol. 2015;309(10):R1243–50.

Wallace K, et al. Hypertension in response to CD4(+) T cells from reduced uterine perfusion pregnant rats is associated with activation of the endothelin-1 system. Am J Physiol Regul Integr Comp Physiol. 2012;303(2):R144–9.

Novotny SR, et al. Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4+ T lymphocytes from placental ischemic rats. Am J Physiol Regul Integr Comp Physiol. 2012;302(10):R1197–201.

Perez-Sepulveda A, et al. Innate immune system and preeclampsia. Front Immunol. 2014;5:244.

Saito S, et al. The role of the immune system in preeclampsia. Mol Aspects Med. 2007;28(2):192–209.

Kalantar F, et al. Serum levels of tumor necrosis factor-alpha, interleukin-15 and interleukin-10 in patients with pre-eclampsia in comparison with normotensive pregnant women. Iran J Nurs Midwifery Res. 2013;18(6):463–6.

Eghbal-Fard S, et al. The imbalance of Th17/Treg axis involved in the pathogenesis of preeclampsia. J Cell Physiol. 2019;234(4):5106–16.

Saito S, et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.

Kerdiles Y, Ugolini S, Vivier E. T cell regulation of natural killer cells. J Exp Med. 2013;210(6):1065–8.

Peritt D, et al. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol. 1998;161(11):5821–4.

Katsumoto T, et al. STAT6-dependent differentiation and production of IL-5 and IL-13 in murine NK2 cells. J Immunol. 2004;173(8):4967–75.

Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2(9):656–63.

Read KA, et al. IL-2, IL-7, and IL-15: multistage regulators of CD4(+) T helper cell differentiation. Exp Hematol. 2016;44(9):799–808.

Giri JG, et al. IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J Leukoc Biol. 1995;57(5):763–6.

Cornish GH, Sinclair LV, Cantrell DA. Differential regulation of T-cell growth by IL-2 and IL-15. Blood. 2006;108(2):600–8.

Darmochwal-Kolarz D, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol. 2012;93(2):75–81.

Ibrahim T, et al. Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. Am J Reprod Immunol. 2017;78(5).

Jeffery HC, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188(3):394–411.

Zhao TX, et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open. 2018;8(9):e022452.

Seelig E, et al. The DIL frequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight. 2018;3(19).

Fishman M, et al. Overall survival by clinical risk category for high dose interleukin-2 (HD IL-2) treated patients with metastatic renal cell cancer (mRCC): data from the PROCLAIM(SM) registry. J Immunother Cancer. 2019;7(1):84.

Granger JP, et al. Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular-renal dysfunction in response to placental ischemia. Methods Mol Med. 2006;122:383–92.

Cunningham MW Jr, et al. Agonistic autoantibodies to the angiotensin II type 1 receptor enhance angiotensin II-induced renal vascular sensitivity and reduce renal function during pregnancy. Hypertension. 2016;68(5):1308–13.

Lu F, et al. Gender-specific effect of overexpression of sFlt-1 in pregnant mice on fetal programming of blood pressure in the offspring later in life. Am J Obstet Gynecol. 2007;197(4):418 e1-5.

Travis OK, et al. Chronic infusion of interleukin-17 promotes hypertension, activation of cytolytic natural killer cells, and vascular dysfunction in pregnant rats. Physiol Rep. 2019;7(7):e14038.

Cornelius DC, Wallace K. Decidual natural killer cells: a critical pregnancy mediator altered in preeclampsia. EBioMedicine. 2019;39:31–2.

Faas MM, De Vos P. Innate immune cells in the placental bed in healthy pregnancy and preeclampsia. Placenta. 2018;69:125–33.

Milosevic-Stevanovic J, et al. Number of decidual natural killer cells & macrophages in pre-eclampsia. Indian J Med Res. 2016;144(6):823–30.

LaMarca BB, et al. Role of endothelin in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension. 2005;46(1):82–6.

Cornelius DC, et al. Endothelin-1 is not a mechanism of IL-17 induced hypertension during pregnancy. Med J Obstet Gynecol. 2013;1(1):1006–10.

Prasanna G, et al. Regulation of endothelin-1 in human non-pigmented ciliary epithelial cells by tumor necrosis factor-alpha. Exp Eye Res. 1998;66(1):9–18.

Marsden PA, Brenner BM. Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol. 1992;262(4 Pt 1):C854–61.

Woods M, et al. Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme. Mol Pharmacol. 1999;55(5):902–9.

Shigematsu T, et al. Induction of endothelin-1 synthesis by IL-2 and its modulation of rat intestinal epithelial cell growth. Am J Physiol. 1998;275(3):G556–63.