Investigation of frequency effect on electrical fatigue and crack tip domain-switching behaviors in Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics via synchrotron X-ray diffraction

Journal of the European Ceramic Society - Tập 37 Số 15 - Trang 4609-4616 - 2017
Methee Promsawat1, Napatporn Promsawat2, Sukanda Jiansirisomboon3, Orapim Namsar3, Frederick P. Marlton4, J. Daniels4, Soodkhet Pojprapai3
1Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, 15 Kanjanavanich Road, Hat-Yai, Songkhla 90112, Thailand
2Synchrotron Light Research Institute, 111 University Avenue, Muang Nakhon Ratchasima, 30000, Thailand
3School of Ceramic Engineering, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
4School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Park, 1997, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys., 82, 1804, 10.1063/1.365983

Xu, 2013, Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device, Nano Lett., 13, 2393, 10.1021/nl400169t

Chen, 2013, High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique, Ultrasonics, 53, 345, 10.1016/j.ultras.2012.06.017

Hwang, 2014, Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester, Adv. Mater., 26, 4880, 10.1002/adma.201400562

Uchino, 1997

Scott, 2000

Nuffer, 2000, Damage evolution in ferroelectric PZT induced by bipolar electric cycling, Acta Mater., 48, 3783, 10.1016/S1359-6454(00)00173-7

Luo, 2012, Electrical fatigue-induced cracking in lead zirconate titanate piezoelectric ceramic and its influence quantitatively analyzed by refatigue method, J. Am. Ceram. Soc., 95, 2593, 10.1111/j.1551-2916.2012.05232.x

Glaum, 2014, Electric fatigue of lead-free piezoelectric materials, J. Am. Ceram. Soc., 97, 665, 10.1111/jace.12811

Pojprapai, 2009, Frequency effects on fatigue crack growth and crack tip domain-switching behavior in a lead zirconate titanate ceramic, Acta Mater., 57, 3932, 10.1016/j.actamat.2009.04.054

Pojprapai, 2012, Frequency effect on electrical fatigue behavior of lead zirconate titanate ceramics, Electron. Lett., 48, 1, 10.1049/el.2012.1625

Promsawat, 2015, Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification, J. Am. Ceram. Soc., 98, 848, 10.1111/jace.13372

Daniels, 2009, High-energy X-ray diffraction using the Pixium 4700 flat-panel detector, J. Synchrotron Radiat., 16, 463, 10.1107/S0909049509015519

Daniels, 2008, Determination of directionally dependent structural and microstructural information using high-energy X-ray diffraction, J. Appl. Crystallogr., 41, 1109, 10.1107/S0021889808031488

Hammersley, 1996, Two-dimensional detector software: from real detector to idealised image or two-theta scan, High Pressure Res., 14, 235, 10.1080/08957959608201408

Jiang, 1994, Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics, J. Appl. Phys., 75, 7433, 10.1063/1.356637

Winzer, 1989, Designing cofired multilayer electrostrictive actuators for reliability, J. Am. Ceram. Soc., 72, 2246, 10.1111/j.1151-2916.1989.tb06069.x

Shieh, 2006, Fatigue crack growth in ferroelectrics under electrical loading, J. Euro. Ceram. Soc., 26, 95, 10.1016/j.jeurceramsoc.2004.10.002

Nuffer, 2002, Microstructural modifications of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue, J. Eur. Ceram. Soc., 22, 2133, 10.1016/S0955-2219(02)00017-1

Subbarao, 1993, Domain switching and microcracking during poling of lead zirconate titanate ceramics, Ferroelectrics, 145, 271, 10.1080/00150199308222455

Pojprapai (Imlao), 2011, Investigation of the domain switching zone near a crack tip in pre-poled lead zirconate titanate ceramic via in situ X-ray diffraction, Scr. Mater., 64, 1, 10.1016/j.scriptamat.2010.08.053

Zhu, 1999, Fatigue crack growth in ferroelectrics driven by cyclic electric loading, J. Mech. Phys. Solids, 47, 81, 10.1016/S0022-5096(98)00082-9

Picinin, 2004, Theoretical and experimental investigations of polarization switching in ferroelectric materials, Phys. Rev. B, 69, 10.1103/PhysRevB.69.064117

Beom, 2005, Crack growth in ferroelectric ceramics under electric loading, Acta Mech., 177, 43, 10.1007/s00707-004-0198-7

Pojprapai (Imlao), 2008, Ferroelastic domain switching fatigue in lead zirconate titanate ceramics, Acta Mater., 56, 1577, 10.1016/j.actamat.2007.11.044

Fang, 2010, Electric-field-induced fatigue crack growth in ferroelectric ceramics, Theor. Appl. Fract. Mech., 54, 98, 10.1016/j.tafmec.2010.10.004

Tagantsev, 2001, Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features, J. Appl. Phys., 90, 1387, 10.1063/1.1381542

Lupascu, 2002, Cyclic cluster growth in ferroelectric perovskites, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.187601

Lupascu, 2004

Lupascu, 2004, Fatigue anisotropy in lead zirconate titanate, J. Eur. Ceram. Soc., 24, 1663, 10.1016/S0955-2219(03)00572-7

Lupascu, 2005, Fatigue in actuator materials: a review, J. Adv. Eng. Mater., 7, 882, 10.1002/adem.200500117

Shvartsman, 2005, Investigation of fatigue mechanism in ferroelectric ceramic via piezoresponse force microscopy, J. Eur. Ceram. Soc., 25, 2559, 10.1016/j.jeurceramsoc.2005.03.100

Yang, 1994, Cracking in ceramic actuators caused by electrostriction, J. Mech. Phys. Solids, 42, 649, 10.1016/0022-5096(94)90056-6

Moulson, 2003

Balke, 2007, Bipolar fatigue caused by field screening in Pb(Zr,Ti)O3 ceramics, J.Am. Ceram. Soc., 90, 3869, 10.1111/j.1551-2916.2007.02041.x

Brennan, 1993, Model of ferroelectric fatigue due to defect/domain interactions, Ferroelectrics, 150, 199, 10.1080/00150199308008705

Glaum, 2011, Temperature and driving field dependence of fatigue processes in PZT bulk ceramics, Acta Mater., 59, 6083, 10.1016/j.actamat.2011.06.017

Nuffer, 2002, Stability of pinning centers in fatigued lead-zirconate-titanate, Appl. Phys. Lett., 80, 10.1063/1.1448654

Scott, 2000, Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics, Appl. Phys. Lett., 76, 3801, 10.1063/1.126786

Suo, 1993, Models for breakdown-resistant dielectric and ferroelectric ceramics, J. Mech. Phys. Solids, 41, 1155, 10.1016/0022-5096(93)90088-W

Yang, 1996, Electric induced failure mechanism, Adv. Mech., 26, 338

Jones, 2005, Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction, J. Appl. Phys., 97, 10.1063/1.1849821

Pramanick, 2009, Subcoercive cyclic electrical loading of lead zirconate titanate ceramics II: Time-resolved X-ray diffraction, J. Am. Ceram. Soc., 92, 2300, 10.1111/j.1551-2916.2009.03219.x

Pramanick, 2011, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading, J. Am. Ceram. Soc., 94, 293, 10.1111/j.1551-2916.2010.04240.x

Daniels, 2010, Electric-field-induced phase-change behavior in (Bi0. 5Na0. 5)TiO3–BaTiO3–(K0. 5Na0. 5)NbO3: a combinatorial investigation, Acta Mater., 58, 2103, 10.1016/j.actamat.2009.11.052

Hall, 2005, Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics, J. Mech. Phys. Solids, 53, 249, 10.1016/j.jmps.2004.07.002

Pojprapai(Imlao), 2010, Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction, Acta Mater., 58, 1897, 10.1016/j.actamat.2009.11.026