Investigation of frequency effect on electrical fatigue and crack tip domain-switching behaviors in Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics via synchrotron X-ray diffraction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Park, 1997, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys., 82, 1804, 10.1063/1.365983
Xu, 2013, Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device, Nano Lett., 13, 2393, 10.1021/nl400169t
Chen, 2013, High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique, Ultrasonics, 53, 345, 10.1016/j.ultras.2012.06.017
Hwang, 2014, Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester, Adv. Mater., 26, 4880, 10.1002/adma.201400562
Uchino, 1997
Scott, 2000
Nuffer, 2000, Damage evolution in ferroelectric PZT induced by bipolar electric cycling, Acta Mater., 48, 3783, 10.1016/S1359-6454(00)00173-7
Luo, 2012, Electrical fatigue-induced cracking in lead zirconate titanate piezoelectric ceramic and its influence quantitatively analyzed by refatigue method, J. Am. Ceram. Soc., 95, 2593, 10.1111/j.1551-2916.2012.05232.x
Glaum, 2014, Electric fatigue of lead-free piezoelectric materials, J. Am. Ceram. Soc., 97, 665, 10.1111/jace.12811
Pojprapai, 2009, Frequency effects on fatigue crack growth and crack tip domain-switching behavior in a lead zirconate titanate ceramic, Acta Mater., 57, 3932, 10.1016/j.actamat.2009.04.054
Pojprapai, 2012, Frequency effect on electrical fatigue behavior of lead zirconate titanate ceramics, Electron. Lett., 48, 1, 10.1049/el.2012.1625
Promsawat, 2015, Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification, J. Am. Ceram. Soc., 98, 848, 10.1111/jace.13372
Daniels, 2009, High-energy X-ray diffraction using the Pixium 4700 flat-panel detector, J. Synchrotron Radiat., 16, 463, 10.1107/S0909049509015519
Daniels, 2008, Determination of directionally dependent structural and microstructural information using high-energy X-ray diffraction, J. Appl. Crystallogr., 41, 1109, 10.1107/S0021889808031488
Hammersley, 1996, Two-dimensional detector software: from real detector to idealised image or two-theta scan, High Pressure Res., 14, 235, 10.1080/08957959608201408
Jiang, 1994, Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics, J. Appl. Phys., 75, 7433, 10.1063/1.356637
Winzer, 1989, Designing cofired multilayer electrostrictive actuators for reliability, J. Am. Ceram. Soc., 72, 2246, 10.1111/j.1151-2916.1989.tb06069.x
Shieh, 2006, Fatigue crack growth in ferroelectrics under electrical loading, J. Euro. Ceram. Soc., 26, 95, 10.1016/j.jeurceramsoc.2004.10.002
Nuffer, 2002, Microstructural modifications of ferroelectric lead zirconate titanate ceramics due to bipolar electric fatigue, J. Eur. Ceram. Soc., 22, 2133, 10.1016/S0955-2219(02)00017-1
Subbarao, 1993, Domain switching and microcracking during poling of lead zirconate titanate ceramics, Ferroelectrics, 145, 271, 10.1080/00150199308222455
Pojprapai (Imlao), 2011, Investigation of the domain switching zone near a crack tip in pre-poled lead zirconate titanate ceramic via in situ X-ray diffraction, Scr. Mater., 64, 1, 10.1016/j.scriptamat.2010.08.053
Zhu, 1999, Fatigue crack growth in ferroelectrics driven by cyclic electric loading, J. Mech. Phys. Solids, 47, 81, 10.1016/S0022-5096(98)00082-9
Picinin, 2004, Theoretical and experimental investigations of polarization switching in ferroelectric materials, Phys. Rev. B, 69, 10.1103/PhysRevB.69.064117
Beom, 2005, Crack growth in ferroelectric ceramics under electric loading, Acta Mech., 177, 43, 10.1007/s00707-004-0198-7
Pojprapai (Imlao), 2008, Ferroelastic domain switching fatigue in lead zirconate titanate ceramics, Acta Mater., 56, 1577, 10.1016/j.actamat.2007.11.044
Fang, 2010, Electric-field-induced fatigue crack growth in ferroelectric ceramics, Theor. Appl. Fract. Mech., 54, 98, 10.1016/j.tafmec.2010.10.004
Tagantsev, 2001, Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features, J. Appl. Phys., 90, 1387, 10.1063/1.1381542
Lupascu, 2002, Cyclic cluster growth in ferroelectric perovskites, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.187601
Lupascu, 2004
Lupascu, 2004, Fatigue anisotropy in lead zirconate titanate, J. Eur. Ceram. Soc., 24, 1663, 10.1016/S0955-2219(03)00572-7
Lupascu, 2005, Fatigue in actuator materials: a review, J. Adv. Eng. Mater., 7, 882, 10.1002/adem.200500117
Shvartsman, 2005, Investigation of fatigue mechanism in ferroelectric ceramic via piezoresponse force microscopy, J. Eur. Ceram. Soc., 25, 2559, 10.1016/j.jeurceramsoc.2005.03.100
Yang, 1994, Cracking in ceramic actuators caused by electrostriction, J. Mech. Phys. Solids, 42, 649, 10.1016/0022-5096(94)90056-6
Moulson, 2003
Balke, 2007, Bipolar fatigue caused by field screening in Pb(Zr,Ti)O3 ceramics, J.Am. Ceram. Soc., 90, 3869, 10.1111/j.1551-2916.2007.02041.x
Brennan, 1993, Model of ferroelectric fatigue due to defect/domain interactions, Ferroelectrics, 150, 199, 10.1080/00150199308008705
Glaum, 2011, Temperature and driving field dependence of fatigue processes in PZT bulk ceramics, Acta Mater., 59, 6083, 10.1016/j.actamat.2011.06.017
Nuffer, 2002, Stability of pinning centers in fatigued lead-zirconate-titanate, Appl. Phys. Lett., 80, 10.1063/1.1448654
Scott, 2000, Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics, Appl. Phys. Lett., 76, 3801, 10.1063/1.126786
Suo, 1993, Models for breakdown-resistant dielectric and ferroelectric ceramics, J. Mech. Phys. Solids, 41, 1155, 10.1016/0022-5096(93)90088-W
Yang, 1996, Electric induced failure mechanism, Adv. Mech., 26, 338
Jones, 2005, Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction, J. Appl. Phys., 97, 10.1063/1.1849821
Pramanick, 2009, Subcoercive cyclic electrical loading of lead zirconate titanate ceramics II: Time-resolved X-ray diffraction, J. Am. Ceram. Soc., 92, 2300, 10.1111/j.1551-2916.2009.03219.x
Pramanick, 2011, Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading, J. Am. Ceram. Soc., 94, 293, 10.1111/j.1551-2916.2010.04240.x
Daniels, 2010, Electric-field-induced phase-change behavior in (Bi0. 5Na0. 5)TiO3–BaTiO3–(K0. 5Na0. 5)NbO3: a combinatorial investigation, Acta Mater., 58, 2103, 10.1016/j.actamat.2009.11.052
Hall, 2005, Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics, J. Mech. Phys. Solids, 53, 249, 10.1016/j.jmps.2004.07.002