Investigation of double perovskites Sr2SmNbO6 and X2CoNbO6 (X=Sr,Ba) with SCAN functional and plus U correction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rubenacker, 1984, Magnetic properties of the alkanediammonium copper halides, J. Magn. Magn Mater., 43, 238, 10.1016/0304-8853(84)90073-8
Mitzi, 1994, Conducting tin halides with a layered organic-based perovskite structures, Nature, 369, 467, 10.1038/369467a0
Papavassiliou, 1995, Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems, Synth. Met., 71, 1713, 10.1016/0379-6779(94)03017-Z
Kang, 2016, Emerging new pseudobinary and ternary halides as scintillators for radiation detection, IEEE Trans. Nucl. Sci., 64, 1817, 10.1109/TNS.2016.2632064
Kang, 2018, Comparative study of perovskite-type scintillator materials CsCaI3 and KCaI3 via first-principles calculations, J. Phys. D, 51, 10.1088/1361-6463/aaa17a
Pickett, 1996, Electronic structure and half-metallic transport in the La1−xCaxMnO3 system, Phys. Rev. B, 53, 1146, 10.1103/PhysRevB.53.1146
Yoshii, 2000, Magnetic transition in the perovskite Ba2CoNbO6, J. Solid State Chem., 151, 294, 10.1006/jssc.2000.8656
Navarroa, 2010, Magnetic transition in double perovskite systems, J. Magn. Magn Mater., 322, 1246, 10.1016/j.jmmm.2009.03.004
Cava, 1988, Superconductivity near 30 K without copper: The Ba0.6K0.4BiO3 perovskite, Nature, 332, 814, 10.1038/332814a0
Bashir, 2011, Structural and complex AC impedance spectroscopic studies of A2CoNbO6 (A = Sr, Ba) ordered double perovskites, Solid State Sci., 13, 993, 10.1016/j.solidstatesciences.2011.02.003
Ramírez, 2013, Structural magnetic and electronic properties of the Sr2CoNbO6 complex perovskite, Int. J. Mod. Phys. B, 27, 1350171, 10.1142/S0217979213501713
Wang, 2013, Origin of the colossal dielectric properties in double perovskite Sr2CoNbO6, AIP Adv., 3, 10.1063/1.4791763
Wang, 2019, Origin of dielectric anomaly in double perovskite Ba2CoNbO6, Ceram. Int., 40, 14607, 10.1016/j.ceramint.2014.06.046
He, 2020, Electronic structures and physical properties of double perovskite A2CoNbO6 (A = Sr, Ba) crystals, J. Phys. Condens. Matter, 32, 135702, 10.1088/1361-648X/ab5e0c
Sun, 2015, Strongly constrained and appropriately normed semilocal density functional, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.036402
Sun, 2016, Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional, Nat. Chem., 8, 831, 10.1038/nchem.2535
Patra, 2021, Correct structural phase stability of FeS2, TiO2, and MnO2 from a semilocal density functional, J. Phys. Chem. C, 125, 4284, 10.1021/acs.jpcc.0c11380
Piaggi, 2021, Phase equilibrium of water with hexagonal and cubic ice using the SCAN functional, J. Chem. Theor. Comput., 17, 3065, 10.1021/acs.jctc.1c00041
Ekholm, 2018, Assessing the SCAN functional for itinerant electron ferromagnets, Phys. Rev. B, 98, 10.1103/PhysRevB.98.094413
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Hafner, 2008, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem., 29, 2044, 10.1002/jcc.21057
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Anisimov, 1991, Band theory and mott insulators: Hubbard U instead of stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943
Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002
Krukau, 2006, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125, 224106, 10.1063/1.2404663
Wang, 2019, Local screened Coulomb correction approach to strongly correlated d-electron systems, J. Chem. Phys., 150, 154116, 10.1063/1.5089464
Feng, 2020, Electronic, magnetic and optical properties of transition-metal and hydroxides doped monolayer g-C3N4: A first principles investigation, J. Phys. Condens. Matter, 32, 445602, 10.1088/1361-648X/aba387
Feng, 2020, Electron correlation effect versus spin–orbit coupling for tungsten and impurities, J. Phys. Condens. Matter, 32, 445603, 10.1088/1361-648X/aba6a5
Feng, 2021, First principles investigation of electron correlation and Lifshitz transition within iron polynitrides, J. Phys. Condens. Matter, 33, 10.1088/1361-648X/abbb41
Feng, 2021, A magnetically controllable metastable LiSeHFeO isomer: An ab-initio investigation from bulk to film, J. Mater. Sci., 56, 1461, 10.1007/s10853-020-05413-9
Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970
Fang, 2019, Tunable electronic properties of monolayer MnPSe3/MoTe2 heterostructure: A first principles study, J. Phys. Condens. Matter, 31, 455001, 10.1088/1361-648X/ab34bc
Dutta, 2016, Sr2SmNbO6 perovskite: Synthesis, characterization and density functional theory calculations, Mater. Chem. Phys., 179, 55, 10.1016/j.matchemphys.2016.05.009
Fu, 2021, Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study, Chem. Eng. J., 414, 128857, 10.1016/j.cej.2021.128857
Xu, 2021, Defect-engineered 2D/2D hBN/g-C3N4 Z-scheme heterojunctions with full visible-light absorption: Efficient metal-free photocatalysts for hydrogen evolution, Appl. Surf. Sci., 547, 149207, 10.1016/j.apsusc.2021.149207
Xu, 2020, Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles, Appl. Surf. Sci., 530, 147181, 10.1016/j.apsusc.2020.147181
Fox, 2001
Madsen, 2018, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun., 231, 140, 10.1016/j.cpc.2018.05.010