Investigation of double perovskites Sr2SmNbO6 and X2CoNbO6 (X=Sr,Ba) with SCAN functional and plus U correction

Advanced Powder Materials - Tập 1 Số 2 - Trang 100019 - 2022
Ying Zeng1, Qingdan Hu1, Min Pan1, Kun Zhang1, Salvatore Grasso1, Chunfeng Hu1, Qingguo Feng1,2
1Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
2National Joint Engineering Laboratory of Power Grid with Electric Vehicles (Shandong University), Jinan 250061, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mitzi, 2019, Introduction: perovskites, Chem. Rev., 119, 3033, 10.1021/acs.chemrev.8b00800

Rubenacker, 1984, Magnetic properties of the alkanediammonium copper halides, J. Magn. Magn Mater., 43, 238, 10.1016/0304-8853(84)90073-8

Mitzi, 1994, Conducting tin halides with a layered organic-based perovskite structures, Nature, 369, 467, 10.1038/369467a0

Papavassiliou, 1995, Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems, Synth. Met., 71, 1713, 10.1016/0379-6779(94)03017-Z

Kang, 2016, Emerging new pseudobinary and ternary halides as scintillators for radiation detection, IEEE Trans. Nucl. Sci., 64, 1817, 10.1109/TNS.2016.2632064

Kang, 2018, Comparative study of perovskite-type scintillator materials CsCaI3 and KCaI3 via first-principles calculations, J. Phys. D, 51, 10.1088/1361-6463/aaa17a

Pickett, 1996, Electronic structure and half-metallic transport in the La1−xCaxMnO3 system, Phys. Rev. B, 53, 1146, 10.1103/PhysRevB.53.1146

Yoshii, 2000, Magnetic transition in the perovskite Ba2CoNbO6, J. Solid State Chem., 151, 294, 10.1006/jssc.2000.8656

Navarroa, 2010, Magnetic transition in double perovskite systems, J. Magn. Magn Mater., 322, 1246, 10.1016/j.jmmm.2009.03.004

Cava, 1988, Superconductivity near 30 K without copper: The Ba0.6K0.4BiO3 perovskite, Nature, 332, 814, 10.1038/332814a0

Bashir, 2011, Structural and complex AC impedance spectroscopic studies of A2CoNbO6 (A = Sr, Ba) ordered double perovskites, Solid State Sci., 13, 993, 10.1016/j.solidstatesciences.2011.02.003

Ramírez, 2013, Structural magnetic and electronic properties of the Sr2CoNbO6 complex perovskite, Int. J. Mod. Phys. B, 27, 1350171, 10.1142/S0217979213501713

Wang, 2013, Origin of the colossal dielectric properties in double perovskite Sr2CoNbO6, AIP Adv., 3, 10.1063/1.4791763

Wang, 2019, Origin of dielectric anomaly in double perovskite Ba2CoNbO6, Ceram. Int., 40, 14607, 10.1016/j.ceramint.2014.06.046

He, 2020, Electronic structures and physical properties of double perovskite A2CoNbO6 (A = Sr, Ba) crystals, J. Phys. Condens. Matter, 32, 135702, 10.1088/1361-648X/ab5e0c

Sun, 2015, Strongly constrained and appropriately normed semilocal density functional, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.036402

Sun, 2016, Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional, Nat. Chem., 8, 831, 10.1038/nchem.2535

Patra, 2021, Correct structural phase stability of FeS2, TiO2, and MnO2 from a semilocal density functional, J. Phys. Chem. C, 125, 4284, 10.1021/acs.jpcc.0c11380

Piaggi, 2021, Phase equilibrium of water with hexagonal and cubic ice using the SCAN functional, J. Chem. Theor. Comput., 17, 3065, 10.1021/acs.jctc.1c00041

Ekholm, 2018, Assessing the SCAN functional for itinerant electron ferromagnets, Phys. Rev. B, 98, 10.1103/PhysRevB.98.094413

Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

Hafner, 2008, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem., 29, 2044, 10.1002/jcc.21057

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Anisimov, 1991, Band theory and mott insulators: Hubbard U instead of stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943

Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002

Krukau, 2006, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125, 224106, 10.1063/1.2404663

Wang, 2019, Local screened Coulomb correction approach to strongly correlated d-electron systems, J. Chem. Phys., 150, 154116, 10.1063/1.5089464

Feng, 2020, Electronic, magnetic and optical properties of transition-metal and hydroxides doped monolayer g-C3N4: A first principles investigation, J. Phys. Condens. Matter, 32, 445602, 10.1088/1361-648X/aba387

Feng, 2020, Electron correlation effect versus spin–orbit coupling for tungsten and impurities, J. Phys. Condens. Matter, 32, 445603, 10.1088/1361-648X/aba6a5

Feng, 2021, First principles investigation of electron correlation and Lifshitz transition within iron polynitrides, J. Phys. Condens. Matter, 33, 10.1088/1361-648X/abbb41

Feng, 2021, A magnetically controllable metastable LiSeHFeO isomer: An ab-initio investigation from bulk to film, J. Mater. Sci., 56, 1461, 10.1007/s10853-020-05413-9

Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970

Fang, 2019, Tunable electronic properties of monolayer MnPSe3/MoTe2 heterostructure: A first principles study, J. Phys. Condens. Matter, 31, 455001, 10.1088/1361-648X/ab34bc

Dutta, 2016, Sr2SmNbO6 perovskite: Synthesis, characterization and density functional theory calculations, Mater. Chem. Phys., 179, 55, 10.1016/j.matchemphys.2016.05.009

Fu, 2021, Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study, Chem. Eng. J., 414, 128857, 10.1016/j.cej.2021.128857

Xu, 2021, Defect-engineered 2D/2D hBN/g-C3N4 Z-scheme heterojunctions with full visible-light absorption: Efficient metal-free photocatalysts for hydrogen evolution, Appl. Surf. Sci., 547, 149207, 10.1016/j.apsusc.2021.149207

Xu, 2020, Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles, Appl. Surf. Sci., 530, 147181, 10.1016/j.apsusc.2020.147181

Fox, 2001

Madsen, 2018, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun., 231, 140, 10.1016/j.cpc.2018.05.010

Tritt, 2011, Thermoelectric phenomena, materials, and applications, Annu. Rev. Mater. Res., 41, 433, 10.1146/annurev-matsci-062910-100453