Investigation of biogenic materials and ferroelectrets for energy harvesting on vibrating aircraft structures

CEAS Aeronautical Journal - Tập 12 - Trang 331-344 - 2021
H. Holzmann1, M. Weber2, Y. J. Park3, S. Perfetto3, H. Atzrodt3, A. Dafnis2
1Research Group System Reliability, Adaptive Structures, and Machine Acoustics SAM, Technical University Darmstadt, Darmstadt, Germany
2Institute of Structural Mechanics and Lightweight Design (SLA), RWTH Aachen University, Aachen, Germany
3Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany

Tóm tắt

In this publication the application of novel piezoelectric materials for energy harvesting on vibrating aircraft structures is investigated. These materials have significant advantages over conventional piezoelectric transducer materials like piezoceramics. In particular, biogenic materials in the form of wood-based materials and ferroelectrets in the form of irradiation cross-linked polypropylene are the subject of the investigation. The material characterization in terms of mechanical and electromechanical properties is shown for both material types. For the wood materials a compression test is used as the material has load-bearing properties. The ferroelectrets provide high compliances and are therefore investigated in a tensile test for material characterisation as well as in a four-point flexural test regarding its behaviour when glued to a dynamically bending surface. Additionally an FE-model of the material model for ferroelectrets is presented, which is validated by experimental results. An estimation of the power output is given for different concepts with both kinds of materials.

Tài liệu tham khảo

Bundesverband derDeutschenLuftverkehrswirtschaft: Klimaschutz im Luftverkehr: analyse der Klimaschutzinstrumente im Luftverkehr zur CO2-Reduktion. https://www.bdl.aero/de/publikation/ analyse-der-klimaschutzinstrumente-im-luftverkehr- zur-co2-reduktion/ Holzmann, H., Schmelz, J., Atzrodt, H., Park, Y.J.: Demonstration of energy harvesting with piezoelectrets in aircraft structures with a simplified structure based on a NASA wingbox model. In: Proceedings of ISMA2020, pp. 2763–2774 (2020) Rivers, Melissa: NASA common research model. https://commonresearchmodel.larc.nasa.gov/ Ross, R.J., Kan, J., Wang, X., Blankenburg, J., Stockhausen, J.I., Pellerin, R.F.: Wood and wood-based materials as sensors—a review of the piezoelectric effect in wood (2012) Fukada, E.: Piezoelectricity as a fundamental property of wood. Wood Sci. Technol. 2, 299–307 (1968) Zhang, X., Wang, X., Huang, J., Xia, Z.: Quasi-static and dynamic piezoelectric d 33 coefficients of irradiation cross-linked polypropylene ferroelectrets. J. Mater. Sci. 44(10), 2459–2465 (2009). https://doi.org/10.1007/s10853-009-3312-3 Zhang, X., Pondrom, P., Wu, L., Sessler, G.M.: Vibration-based energy harvesting with piezoelectrets having high d31 activity. Appl. Phys. Lett. 108(19), 193903 (2016). https://doi.org/10.1063/1.4948649 Bauer, S., Gerhard-Multhaupt, R., Sessler, G.M.: Ferroelectrets: soft electroactive foams for transducers. Phys. Today 57(2), 37–43 (2004). https://doi.org/10.1063/1.1688068 Zhang, X., Pondrom, P., Sessler, G.M., Ma, X.: Ferroelectret nanogenerator with large transverse piezoelectric activity. Nano Energy 50, 52–61 (2018). https://doi.org/10.1016/j.nanoen.2018.05.016 Xue, Y., Zhang, X., Zheng, J., Liu, T., Zhu, B.: Comparative study of transducers for air-borne sound based on normal and irradiation cross-linked polypropylene piezoelectret films. IEEE Trans. Dielectr. Electr. Insul. 25(1), 228–234 (2017). https://doi.org/10.1109/TDEI.2018.006492 Pondrom, P.: Elektret- und Piezoelektret-Wandler für Körperschallaufnahme und Energy-Harvesting, Technische Universität Darmstadt, Dissertation (2018) Niemz, P., Lühmann, A., Wagner, J.: Orientierende Untersuchungen zur Ermittlung ausgewählter piezoelektrischer Konstanten an Holz. Holz als Roh- und Werkstoff 50(12), 484 (1992) Goga, V., Hučko, B.: Phenomenological material model of foam solids. Strojnícky casopis J. Mech. Eng. 65(1), 5–20 (2015). https://doi.org/10.1515/scjme-2016-0001 Wu, L., Zhang, X., Zhang, X.: Mechanical and piezoelectric performance of cross-linked polypropylene films treated with extending. Ceram. Int. 41, S218–S222 (2015). https://doi.org/10.1016/j.ceramint.2015.03.243 Kranz, B.: Berichte aus dem IWU. Bd. 65: Beitrag zur numerischen Beschreibung des funktionellen Verhaltens von Piezoverbundmodulen: Zugl.: Chemnitz, Techn. Univ., Diss., 2012. Auerbach: Verl. Wiss. Scripten (2012). ISBN 978-3-942267-52-6 Ohigashi, H.: Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J. Appl. Phys. 47(3), 949–955 (1976). https://doi.org/10.1063/1.322685 Sappati, K.K., Bhadra, S.: Piezoelectric polymer and paper substrates: a review. Sensors (2018). https://doi.org/10.3390/s18113605