Investigation of an organic Rankine cycle (ORC) incorporating a heat recovery water-loop: Water consumption assessment
Tài liệu tham khảo
UNFPA, “UNFPA (2015). Annual Report. For people, Planet & Prosperity,” 2015. [Online]. Available: https://www.unfpa.org. [Accessed 12 Juillet 2021].
IEA, “World Energy Outlook 2021 - Analysis - IEA,” 2021. [Online]. Available: https://www.iea.org. [Accessed 2 December 2021].
IEA, “World Energy Outlook 2019 - Analysis - IEA,” 2019. [Online]. Available: https//:www.iea.org. [Accessed 12 Juillet 2021].
G. Bravaccini, “IEA's Electricity Market Report 2021 - The Summary | News | Flexidao,” 2 Décembre 2021. [Online]. Available: https://www.flexidao.com/news/summary-eia-electricity-market-report-2021. [Accessed 20 Décembre 2021].
La Fonda, “Les 17 objectifs du développement durable,” [Online]. Available: https://fonda.asso.fr/ressources/les-17-objectifs-de-developpement-durable. [Accessed Vendredi Juillet 2021].
Bahadormanesh, 2017, Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm, Energy Conversion and Management, 148, 1179, 10.1016/j.enconman.2017.06.070
Tartière, 2017, A World Overview of the Organic Rankine Cycle Market, Energy Procedia, 129, 2, 10.1016/j.egypro.2017.09.159
Dong, 2017, Analysis of the supercritical organic Rankine cycle and the radial turbine design for high temperature applications, Applied Thermal Engineering, 123, 1523, 10.1016/j.applthermaleng.2016.12.123
Pethurajan, 2018, Issues, comparisons, turbine selections and applications - An overview in organic Rankine cycle, Energy Conversion and Management, 166, 474, 10.1016/j.enconman.2018.04.058
X. Wang, X. Liu and C. Zhang, “Parametric optimization and range analysis of Organic Rankine Cycle for binary-cycle geothermal plant,” Energy Conversion and Management, vol. 80, pp. 256-65, 2014.
IRENA, “IRENA - International Renewable Energy Agency,” [Online]. Available: https://www.irena.org. [Accessed 12 Juillet 2021].
A. Belward, B. Bisselink, K. Bodis, A. Brink, J. Dallemand, A. de Roo, T. Huld, F. Kayitakire, P. Mayaux, M. Moner-Girona, H. Ossenbrink, I. Pinedo, H. Sint, J. Thielen, S. Szabo, U. Tromboni and L. Willemen, “Renewable energies in Africa: current knowledge,” in European Commission Joint Research Centre, Luxembourg, 2011, http://www.jrc.ec.europa.eu/.
Mayi, 2020, “Feasibility Study of a Climatic Well in the Tropical Region: Case of Douala-Cameroon,” International Journal of Energy for Clean, Environment, 21, 283
Marugan-Cruz, 2020, Towards zero water consumption in solar tower power plants, Applied Thermal Engineering, 178, 10.1016/j.applthermaleng.2020.115505
C. S. Turchi, M. J. Wagner and C. F. Kutscher, “Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses, NREL Technical report. NREL/TP-5500-49468,” United States: N. p.,, 2010. Web. https://doi.org/10.2172/1001357.
Zhai, 2010, Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage, Energy Policy, 38, 5653, 10.1016/j.enpol.2010.05.013
Cengel, 2008
Otieno, 2016, “An analysis of key environmental and social risks in the development of concentrated solar power projects,” in AIP Conference Proceedings 1734, 160012, Cape Town, South Africa
Davis, 2002
Zhou, 2011, A cost model approach for RO water treatment of power plant, Procedia Environmental Sciences, vol. 11, no. B, 581, 10.1016/j.proenv.2011.12.091
Marzouk, 2016, Estimating water treatment plants costs using factor analysis and artificial neuronal networks, Journal of Cleaner Production, 112, 4540, 10.1016/j.jclepro.2015.09.015
Tan, 2021, Proposal and techno-economic analysis of a novel system for waste heat recovery and water saving in coal-fired power plants: A case study, Journal of Cleaner Production, 281, 10.1016/j.jclepro.2020.124372
Chen, 2020, A novel technical route based on wet flue gas desulfurization process for flue gas deshumidification, water and heat recovery, Applied Thermal Engineering, 171, 10.1016/j.applthermaleng.2020.115102
Domenichini, 2011, Evaluation and analysis of water usage and loss of power in plants with CO2 capture, Energy Procedia, 4, 1925, 10.1016/j.egypro.2011.02.072
Zuo, 2008, Analysis on water consumption and water saving countermeasures of thermal power industry in Beijing, Water Wastewater Eng., 34, 56
Woodland, 2020, Considerations on alternative organic Rankine Cycle Configurations for low-grade waste heat recovery, Energy, 193, 10.1016/j.energy.2019.116810
Quoilin, 2012, Working fluid selection and operating maps for Organic Rankine Cycle expansion machines
Wang, 2013, Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation, Energy, 50, 343, 10.1016/j.energy.2012.11.010
Yamamoto, 2001, Design and testing of the organic Rankine cycle, Energy, 26, 239, 10.1016/S0360-5442(00)00063-3
Quan, 2020, Aerodynamic design of an axial impulse turbine for the high-temperature oragnic Rankine cycle, Applied Thermal Engineering, 167, 10.1016/j.applthermaleng.2019.114708
Santos, 2020, Design strategy for component and working fluid selection in a domestic micro-CHP ORC boiler, Applied Thermal Engineering, 169, 10.1016/j.applthermaleng.2020.114945
A. DIjoux, F. Sinama, O. Marc, A. Journoud, B. Clauzade and J. Castaing-Lasvignottes, “Influence du choix du fluide de travail sur les performances d'un cycle organique de Rankine appliqué à l'énergie thermique des mers,” in Congrès français de thermique 2016: Thermique et Multiphysique, Toulouse, France, 2016.
Y. Jannot, “Transferts thermiques, métrologie et séchage,” Ecole des Mines Nancy, 2ème Année (2012). [Online]. Available: https://www.thermique55.com › principal › thermique. [Accessed 22 Juin 2021].