Investigation of a single barrier discharge in submillimeter air gaps. Nonuniform field

Pleiades Publishing Ltd - Tập 59 - Trang 1127-1135 - 2014
P. N. Bondarenko1, O. A. Emel’yanov1, M. V. Shemet1
1St. Petersburg State Technical University, St. Petersburg, Russia

Tóm tắt

Pulse characteristics of single barrier discharges as well as parameters of charges accumulated on the surface of a dielectric under the atmospheric pressure in the “needle-(0.1–2.0)-mm air gap-polymer barrier-plane” system are investigated. It is found experimentally that for the positive polarity of the needle, the voltage for the discharge initiation is higher than in the case of the negative polarity by ∼25–35%. The reversal of the needle polarity from negative to positive increases the amplitude of the discharge current and the accumulated surface charge by ∼1.5–3 times. For the positive polarity of the needle, the discharge is governed by a streamer mechanism, while for the negative polarity, the discharge is initiated by the formation of a single Trichel pulse. The single pulse regime is observed for the discharge current up to a certain electrode gap d CR. For the positive needle and for air gap width d air > d CR ≈ 1.5 mm, a multipulse burst corona is formed, while for the negative needle and d air > d CR ≈ 0.9 mm, a damped sequence of Trichel pulses evolves in the system.

Tài liệu tham khảo

H. Ritz, Arch. Electrotech. 26, 219 (1932). J. B. Peace, Proc. R. Soc. London 52(315–320), 99 (1892). A. Klemm, Arch. Electrotech. 12, 553 (1923). T. Umemura, S. Nakamura, M. Hikita, T. Maeda, and M. Higashiyama, IEEE Trans. Dielectr. Electr. Insul. 20, 255 (2013). P. N. Bondarenko, O. A. Emel’yanov, and M. V. Shemet, Tech. Phys. 59, 838 (2014). R. Strigel, Arch. Electrotech. 27, 377 (1933). G. F. Leal Ferreira, O. N. Oliveira, and J. A. Giacometti, J. Appl. Phys. 59, 3045 (1986). R. Tirumala, Y. Li, D. A. Pohlman, and D. B. Go, J. Electrost. 69, 36 (2011). G. E. Georghiou, R. Morrow, and A. C. Metaxas, J. Phys. D: Appl. Phys. 32, 1370 (1999). T. Asokan and T. C. Balachandra, IEEE Trans. Dielectr. Electr. Insul. 18, 1864 (2011). U. Kogelschatz, J. Phys.: Conf. Ser. 257, 012015 (2010). Yu. K. Bobrov, N. G. Gusein-zade, A. A. Rukhadze, and Yu. V. Yurgelenas, Physical Models and Mechanisms of Electrical Breakdown of Gases (MGU, Moscow, 2012). Y. Murooka, T. Takada, and K. Hidaka, IEEE Electr. Insul. Mag. (USA) 17, 6 (2001). T. N. Tran, I. O. Golosnoy, P. L. Lewin, and G. E. Georghiou, J. Phys. D: Appl. Phys. 44, 015203 (2011). Yu. S. Akishev, A. V. Dem’yanov, V. B. Karal’nik, A. E. Monich, and N. I. Trushkin, Plasma Phys. Rep. 29, 82 (2003). A. Kumada, S. Okabe, and K. Hidaka, J. Phys. D: Appl. Phys. 42, 095209 (2009). Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Izd. Dom Intellekt, Dolgoprudnyi, 2009). I. M. Bortnik, I. P. Vereshchagin, and Yu. N. Vershinin, Electrophysical Foundations of High Voltage Techniques (Energoatomizdat, Moscow, 1993). L. B. Loeb, Fundamental Processes of Electrical Discharges in Gases (Wiley, New York, 1939). V. Nikonov, R. Bartnikas, and M. R. Wertheimer, IEEE Trans. Plasma Sci. 29, 866 (2001). E. D. Lozanskii and O. B. Firsov, Theory of Spark (Atomizdat, Moscow, 1975). G. A. Shneerson, Fiz. Plazmy 11, 1428 (1985). E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (Mosk. Fiz. Tekh. Inst., Moscow, 1997). J. Hui, Zh. Guan, L. Wang, and Q. Li, IEEE Trans. Dielectr. Electr. Insul. 15, 382 (2008). A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D: Appl. Phys. 41, 234005 (2008). L. Papageorghiou, E. Panousis, J. F. Loiseau, N. Spyrou, and B. Held, J. Phys. D: Appl. Phys. 42, 105201 (2009). K. Kozlov, H.-E. Wagner, R. Brandenburg, and P. Michel, J. Phys. D: Appl. Phys. 34, 3164 (2001). Y. Yurgelenas and H.-E. Wagner, J. Phys. D: Appl. Phys. 39, 4031 (2006). V. Gibalov and G. Pietsch, J. Phys. D: Appl. Phys. 33, 2618 (2000). V. I. Gibalov and G. J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012). G. N. Aleksandrov, Zh. Tekh. Fiz. 33, 223 (1963). R. Morrow, Phys. Rev. A 32, 1799 (1985). A. P. Napartovich, Yu. S. Akishev, A. A. Deryugin, I. V. Kochetov, M. V. Pan’kin, and N. I. Trushkin, J. Phys. D: Appl. Phys. 30, 2726 (1997). M. Cernak, T. Hosokawa, S. Kobayashi, and T. Kaneda, J. Appl. Phys. 83, 5678 (1998). P. Sattari, C. F. Gallo, G. S. P. Castle, and K. Adamiak, J. Phys. D: Appl. Phys. 44, 155502 (2011). J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases (Clarendon, Oxford, 1953).