Investigation of Weld Corrosion Effects on the Stress Behavior of a Welded Joint Pipe Using Numerical Simulations

Metals and Materials International - Tập 25 - Trang 918-929 - 2019
Yong-Sang Kim1, Jung-Gu Kim2
1Department of Mechanical and Materials Engineering, Korea Institute of Nuclear Safety, Daejeon, Republic of Korea
2School of Advanced Materials Engineering, Sungkyunkwan University, Suwon, Republic of Korea

Tóm tắt

In this paper, the influence of weld corrosion on the mechanical behavior of a welded joint pipeline was investigated using corrosion and mechanical simulations simultaneously. In the corrosion simulation, the modeling results (i.e., the corrosion potential and current density) revealed that the welded joint is preferentially corroded and the corrosion rate is higher in the outside environment due to the severe corrosion factors. The increase in corrosion degradation according to the operation time increases the stress concentration on the welded joint, indicating that the failure risk of the welded joint is increased with increasing corrosion degradation. These results can be used to evaluate the lifetime of welded joints exposed to corrosion and suggest guidelines for the maintenance of structures.

Tài liệu tham khảo

A. Wahid, D.L. Olson, D.K. Matlock, C.E. Cross, Corrosion of Weldments, Weldling, Brazing, and Soldering. ASM Handbook, vol. 6 (ASM International, Russell Township, 1993), pp. 1065–1069 P.P. Sarkar, P. Kumar, M.K. Manna, P.C. Chakraborti, Mater. Lett. 59, 2488 (2005) I. Ahamed, R. Prasad, M.A. Quraush, Corros. Sci. 52, 933 (2010) D.A. Jones, Principle and Prevention of Corrosion, 2nd edn. (Prentice Hall, New Jersey, 1996), pp. 50–64 D. McNeill, J. Brock, Heat Pip. Air Cond. 43, 107 (1971) Annex A16. RCC-MR, Design and Construction Rules for Mechanical Components of FRB Nuclear Islands, 2nd edn. (AFCEN, Paris, 2002) S. Murugan, S.K. Rail, P.V. Kumar, T. Jayakumar, B. Raj, M.S.C. Bose, Int. J. Pres. Vessel. Pip. 78, 307 (2007) Y.-S. Kim, J.G. Kim, D.H. Choi, J.-Y. Lim, J.-G. Kim, Eng. Anal. Bound. Elem. 77, 36 (2017) Z. Lan, X. Wang, B. Hou, Z. Wang, J. Song, S. Chen, Eng. Anal. Bound. Elem. 36, 903 (2012) W. Wang, A. Zhou, G. Fu, C.-Q. Li, D. Robert, Eng. Fail. Anal. 81, 254 (2017) M. Ahammed, Int. J. Press. Vessel. Pip. 75, 321 (1998) M. Cerit, K. Genel, S. Eksi, Eng. Fail. Anal. 16, 2467 (2009) A. Kolios, S. Srikanth, K. Salonitis, Proc. CIRP 13, 230 (2014) W.H. Hartt, Corrosion 68, 1063 (2012) J.-H. Kim, Y.-S. Kim, J.-G. Kim, Ocean Eng. 115, 149 (2016) H. Wan, C. Du, Z. Liu, D. Song, X. Li, Ocean Eng. 114, 216 (2016) E.E. Stansbury, R.A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM International, Ohio, 2000), pp. 155–173 Y.-S. Kim, W.-C. Kim, J.-G. Kim, Corrosion 74, 112 (2018) I. Ahamad, R. Prasad, M.A. Quraishi, Corros. Sci. 52(1472), 1472 (2010) H.H. Uhlig, R.W. Revie, Corrosion and Corrosion Control (Wiley, New York, 1985), p. 223 P. Doig, P.E.J. Flewitt, J. Electrochem. Soc. 126, 2057 (1979) C.T. Kwok, S.L. Fong, F.T. Cheng, H.C. Man, J. Mater. Process. Technol. 176, 168 (2006) K. Fushimi, A. Naganuma, K. Azumi, Y. Kawahara, Corros. Sci. 50, 903 (2008) F.P. Brennan, P. Peleties, A.K. Hellier, Int. J. Fatigue 22, 573 (2000) P. Dong, Int. J. Fatigue 23, 865 (2001) W.D. Pilkey, D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd edn. (Wiley, New Jersey, 2008), p. 90