Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu các hydrocarbon thơm nhiều vòng (PAHs) gắn với PM2.5 và các dẫn xuất của chúng (PAHs nitrat và PAHs oxy hóa) trong môi trường ven đường ở khu vực ven biển phía đông Trung Quốc: đặc trưng, xác định nguồn gốc và đánh giá độc tính
Tóm tắt
Các mẫu PM2.5 được thu thập đồng thời tại các khu vực ven đường ở đô thị và ngoại ô trong các khoảng thời gian lưu lượng giao thông khác nhau tại Thanh Đảo, một thành phố ven biển thuộc Trung Quốc. Thành phần, biến đổi theo chu kỳ ngày, nguồn gốc và độc tính của PAHs, NPAHs và OPAHs trong PM2.5 đã được phân tích để thảo luận ảnh hưởng của khí thải xe cộ đối với các đặc điểm ô nhiễm của các thành phần này. Nồng độ PAHs, NPAHs và OPAHs tại địa điểm ngoại ô cao hơn một chút so với địa điểm đô thị, và nồng độ vào mùa đông cao gấp khoảng bốn lần so với mùa hè. Đối với PAHs và NPAHs, tại địa điểm đô thị, giờ cao điểm buổi sáng và giờ cao điểm buổi tối là hai khoảng thời gian có nồng độ cao nhất so với các khoảng thời gian lấy mẫu khác, điều này phù hợp với những thời điểm giao thông tắc nghẽn. Tuy nhiên, tại địa điểm ngoại ô, đỉnh nồng độ cao nhất xuất hiện vào giờ cao điểm buổi sáng và đỉnh cao thứ hai xuất hiện vào ban đêm. Ba nguồn chính bao gồm đốt than, khí thải từ xe chạy bằng xăng, và khí thải từ xe tải diesel đã được xác định thông qua phương pháp phân tích thành phần chính (PMF). Trong ba nguồn này, khí thải từ xe chạy bằng xăng đóng góp nhiều nhất vào mùa hè và đốt than đóng góp tỷ lệ cao nhất vào mùa đông. Mặc dù số lượng xe diesel đi qua các điểm lấy mẫu ít hơn nhiều so với xe chạy bằng xăng, nhưng đóng góp của khí thải từ xe diesel tương đương với xe chạy bằng xăng, điều này cho thấy cần chú ý hơn đến việc quản lý xe diesel để giảm ô nhiễm PAHs và các dẫn xuất của chúng trong môi trường ven đường. Các nguồn giao thông có ảnh hưởng lớn đến độc tính của PAHs và NPAHs.
Từ khóa
#PM2.5 #PAHs #NPAHs #OPAHs #khí thải xe cộ #ô nhiễm không khí #quản lý môi trường #Thanh Đảo #Trung QuốcTài liệu tham khảo
Albinet A, Leoz-Garziandia E, Budzinski H, Viilenave E (2007) Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci Total Environ 384:280–292. https://doi.org/10.1016/j.scitotenv.2007.04.028
Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo JL (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution. Atmos Environ 42:55–64. https://doi.org/10.1016/j.atmosenv.2007.10.008
Alves CA, Vicente AM, Custodio D, Cerqueira M, Nunes T, Pio C, Lucarelli F, Calzolai G, Nava S, Diapouli E, Eleftheriadis K, Querol X, Musa Bandowe BA (2017) Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Sci Total Environ 595:494–504. https://doi.org/10.1016/j.scitotenv.2017.03.256
Bamford HA, Baker JE (2003) Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos Environ 37:2077–2091. https://doi.org/10.1016/S1352-2310(03)00102-X
Bandowe BA, Meusel H, Huang RJ, Ho K, Cao J, Hoffmann T, Wilcke W (2014a) PM(2). (5)-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87. https://doi.org/10.1016/j.scitotenv.2013.11.108
Bandowe BAM, Meusel H, Huang R-J, Ho K, Cao J, Hoffmann T, Wilcke W (2014b) PM2. 5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473:77–87. https://doi.org/10.1016/j.scitotenv.2013.11.108
Bansal V, Kim KH (2015) Review of PAH contamination in food products and their health hazards. Environ Int 84:26–38. https://doi.org/10.1016/j.envint.2015.06.016
Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z (2018) The 2016 global and national burden of diabetes mellitus attributable to PM 2·5 air pollution. Lancet Planet Health 2:e301–e312. https://doi.org/10.1016/s2542-5196(18)30140-2
Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ 33:3731–3738. https://doi.org/10.1016/S1352-2310(99)00199-5
Chen F, Hu W, Zhong Q (2013) Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan Tunnel of Nanjing, China. Atmos Res 124:53–60. https://doi.org/10.1016/j.atmosres.2012.12.008
Chen Y, Du W, Shen G, Zhuo S, Zhu X, Shen H, Huang Y, Su S, Lin N, Pei L (2017a) Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAH s) in rural households: Influence of household cooking energies. Indoor Air 27:169–178. https://doi.org/10.1111/ina.12300
Chen Y, Li X, Zhu T, Han Y, Lv D (2017b) PM2. 5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Sci Total Environ 586:255–264. https://doi.org/10.1016/j.scitotenv.2017.01.214
Chuesaard T, Chetiyanukornkul T, Kameda T, Hayakawa K, Toriba A (2014) Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol Air Qual Res 14:1247–1257. https://doi.org/10.4209/aaqr.2013.05.0161
Chung MY, Lazaro RA, Lim D, Jackson J, Lyon J, Rendulic D, Hasson AS (2006) Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts. Environ Sci Technol 40:4880–4886. https://doi.org/10.1021/es0515957
Collins J, Brown J, Alexeeff G, Salmon A (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28:45–54. https://doi.org/10.1006/rtph.1998.1235
Dickhut R, Canuel E, Gustafson K, Liu K, Arzayus K, Walker S, Edgecombe G, Gaylor M, MacDonald E (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640. https://doi.org/10.1021/es000971e
Durant JL, Busby WF Jr, Lafleur AL, Penman BW, Crespi CL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res/Genet Toxicol 371:123–157. https://doi.org/10.1016/S0165-1218(96)90103-2
Feilberg A, Poulsen MWB, Nielsen T, Skov H (2001) Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark. Atmos Environ 35:353–366. https://doi.org/10.1016/S1352-2310(00)00142-4
Gao Y, Guo X, Ji H, Li C, Ding H, Briki M, Tang L, Zhang Y (2016) Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmos Res 178–179:6–16. https://doi.org/10.1016/j.atmosres.2016.03.015
Hien TT, Kameda T, Takenaka N, Bandow H (2007) Nitro-polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in particulate matter in an urban area of a tropical region: Ho Chi Minh City, Vietnam. Atmos Environ 41:7715–7725. https://doi.org/10.1016/j.atmosenv.2007.06.020
Ho KF, Ho SSH, Lee SC, Cheng Y, Chow JC, Watson JG, Louie PKK, Tian L (2009) Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmos Environ 43:6343–6351. https://doi.org/10.1016/j.atmosenv.2009.09.025
Huang B, Liu M, Bi X, Chaemfa C, Ren Z, Wang X, Sheng G, Fu J (2014a) Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. Atmos Pollut Res 5:210–218. https://doi.org/10.5094/apr.2014.026
Huang L, Bohac SV, Chernyak SM, Batterman SA (2013) Composition and integrity of PAHs, nitro-PAHs, hopanes, and steranes in diesel exhaust particulate matter. Water Air Soil Pollut 224:1630. https://doi.org/10.1007/s11270-013-1630-1
Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prevot AS (2014b) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222. https://doi.org/10.1038/nature13774
Jariyasopit N, Simonich SLM, McIntosh M, Zimmermann K, Arey J, Atkinson R, Cheong PH-Y, Carter RG, Yu T-W, Dashwood RH (2014) Novel Nitro-PAH Formation from Heterogeneous Reactions of PAHs with NO2, NO3/N2O5, and OH Radicals: Prediction, Laboratory Studies and Mutagenicity. Environ Sci Technol 48. https://doi.org/10.1021/es4043808
Jing B, Wu L, Mao H, Gong S, He J, Zou C, Song G, Li X, Wu Z (2016) Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing-Part 1: development and evaluation of vehicle emission inventory. Atmos Chem Phys 16:3161–3170. https://doi.org/10.1016/j.envpol.2014.04.039
Justo EPS, Quijano MFC, Beringui K, Ventura LB, Pereira GM, Vasconcellos PdC, Gioda A (2022) Assessment of the impact of the bus fleet and transportation infrastructure works on the air quality in Rio de Janeiro (Olympic Games 2016). Air Qual Atmos Health. https://doi.org/10.1007/s11869-022-01275-z
Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019
Lei Y, Wang Z, Xu H, Feng R, Zhang N, Zhang Y, Du W, Zhang Q, Wang Q, Li L (2022) Characteristics and health risks of parent, alkylated, and oxygenated PAHs and their contributions to reactive oxygen species from PM2. 5 vehicular emissions in the longest tunnel in downtown Xi’an, China. Environ Res 212:113357. https://doi.org/10.1016/j.envres.2022.113357
Leotz-gartziandia E, Tatry V, Carlier P (2000) Sampling and Analysis of Polycyclic Aromatic Hydrocarbons (PAH) and Oxygenated PAH in Diesel Exhaust and Ambient Air. Polycyclic Aromat Compd 20:245–258. https://doi.org/10.1080/10406630008034789
Li K, Zhu Y, Gao H, Yao X (2015a) A comparative study of cloud condensation nuclei measured between non-heating and heating periods at a suburb site of Qingdao in the North China. Atmos Environ 112:40–53. https://doi.org/10.1016/j.atmosenv.2015.04.024
Li W, Wang C, Shen H, Su S, Shen G, Huang Y, Zhang Y, Chen Y, Chen H, Lin N (2015b) Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China. Environ Pollut 197:156–164. https://doi.org/10.5194/acp-16-3161-2016
Li Y, Yang L, Chen X, Jiang P, Gao Y, Zhang J, Yu H, Wang W (2018) Indoor/outdoor relationships, sources and cancer risk assessment of NPAHs and OPAHs in PM2.5 at urban and suburban hotels in Jinan, China. Atmos Environ 182:325–334. https://doi.org/10.1016/j.atmosenv.2018.03.058
Lin Y, Ma Y, Qiu X, Li R, Fang Y, Wang J, Zhu Y, Hu D (2015a) Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2. 5 in Beijing. J Geophys Res: Atmos 120:7219–7228
Lin Y, Qiu X, Ma Y, Ma J, Zheng M, Shao M (2015b) Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ Pollut 196:164–170. https://doi.org/10.1016/j.envpol.2014.10.005
Liu D, Lin T, Syed JH, Cheng Z, Xu Y, Li K, Zhang G, Li J (2017) Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. Sci Rep 7:10398. https://doi.org/10.1038/s41598-017-10623-4
Liu J, Li J, Lin T, Liu D, Xu Y, Chaemfa C, Qi S, Liu F, Zhang G (2013) Diurnal and nocturnal variations of PAHs in the Lhasa atmosphere, Tibetan Plateau: implication for local sources and the impact of atmospheric degradation processing. Atmos Res 124:34–43. https://doi.org/10.1016/j.atmosres.2012.12.016
Lu W, Yang L, Chen J, Wang X, Li H, Zhu Y, Wen L, Xu C, Zhang J, Zhu T (2016) Identification of concentrations and sources of PM 2.5-bound PAHs in North China during haze episodes in 2013. Air Qual Atmos Health 9:823–833. https://doi.org/10.1007/s11869-015-0386-8
Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B (2012) Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: a source apportionment. Atmos Environ 60:375–382. https://doi.org/10.1016/j.atmosenv.2012.06.073
Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455. https://doi.org/10.1021/es970566w
NBSC (2018) (National Bureau of Statistics of China), http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm. Accessed Sept 2019
Nisbet IC, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300. https://doi.org/10.1016/0273-2300(92)90009-X
Niu X, Ho SSH, Ho KF, Huang Y, Sun J, Wang Q, Zhou Y, Zhao Z, Cao J (2017) Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environ Pollut 231:1075–1084. https://doi.org/10.1016/j.envpol.2017.08.099
Okuda T, Okamoto K, Tanaka S, Shen Z, Han Y, Huo Z (2010) Measurement and source identification of polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Xi’an, China, by using automated column chromatography and applying positive matrix factorization (PMF). Sci Total Environ 408:1909–1914. https://doi.org/10.1016/j.scitotenv.2010.01.040
Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924. https://doi.org/10.1016/S1352-2310(02)00206-6
Perrone MG, Carbone C, Faedo D, Ferrero L, Maggioni A, Sangiorgi G, Bolzacchini E (2014) Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmos Environ 82:391–400. https://doi.org/10.1016/j.atmosenv.2013.10.040
Polissar AV, Hopke PK, Paatero P, Malm WC, Sisler JF (1998) Atmospheric aerosol over Alaska: 2. Elemental composition and sources. 103: 19045-19057. https://doi.org/10.1029/98JD01212
Ringuet J, Leoz-Garziandia E, Budzinski H, Villenave E, Albinet A (2012) Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmos Chem Phys 12:8877–8887. https://doi.org/10.5194/acp-12-8877-2012
Shen G, Tao S, Wang W, Yang Y, Ding J, Xue M, Min Y, Zhu C, Shen H, Li W (2011) Emission of oxygenated polycyclic aromatic hydrocarbons from indoor solid fuel combustion. Environ Sci Technol 45:3459–3465. https://doi.org/10.1021/es104364t
Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y, Chen H, Li T, Sun K, Li B, Liu W, Liu J, Tao S (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424. https://doi.org/10.1021/es400857z
Sosa BS, Porta A, Colman Lerner JE, Banda Noriega R, Massolo L (2017) Human health risk due to variations in PM 10 -PM 2.5 and associated PAHs levels. Atmos Environ 160:27–35. https://doi.org/10.1016/j.atmosenv.2017.04.004
Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. https://doi.org/10.1016/j.envpol.2011.10.025
Tong X, Chen X-C, Chuang H-C, Cao J-J, Ho SSH, Lui K-H, Ho KF (2019) Characteristics and cytotoxicity of indoor fine particulate matter (PM2.5) and PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Hong Kong. Air Qual Atmos Health 12:1459–1468. https://doi.org/10.1007/s11869-019-00762-0
Wang C, Li W, Chen J, Wang H, Li T, Shen G, Shen H, Huang Y, Wang R, Wang B, Zhang Y, Tang J, Liu W, Wang X, Tao S (2012) Summer atmospheric polybrominated diphenyl ethers in urban and rural areas of northern China. Environ Pollut 171:234–240. https://doi.org/10.1016/j.envpol.2012.07.041
Wang F, Lin T, Li Y, Ji T, Ma C, Guo ZJ (2014) Sources of polycyclic aromatic hydrocarbons in PM2. 5 over the East China Sea, a downwind domain of East Asian continental outflow. 92: 484–492. https://doi.org/10.1016/j.atmosenv.2014.05.003
Wang P, Qi A, Huang Q, Wang Y, Tuo X, Zhao T, Duan S, Gao H, Zhang W, Xu P, Zhang T, Zhang X, Wang W, Yang L (2022a) Spatial and temporal variation, source identification, and toxicity evaluation of brominated/chlorinated/nitrated/oxygenated-PAHs at a heavily industrialized area in eastern China. Sci Total Environ 822. https://doi.org/10.1016/j.scitotenv.2022.153542
Wang Q, Jiang N, Yin S, Li X, Yu F, Guo Y, Zhang R (2017) Carbonaceous species in PM2. 5 and PM10 in urban area of Zhengzhou in China: seasonal variations and source apportionment. Atmos Res 191:1–11. https://doi.org/10.1016/j.atmosres.2017.02.003
Wang Q, Liu M, Yu Y, Li Y (2016) Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China. Environ Pollut 218:118–128. https://doi.org/10.1016/j.envpol.2016.08.037
Wang W, Jariyasopit N, Schrlau J, Jia Y, Tao S, Yu TW, Dashwood RH, Zhang W, Wang X, Simonich SL (2011) Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environ Sci Technol 45:6887–6895. https://doi.org/10.1021/es201443z
Wang Y, Qi A, Wang P, Tuo X, Huang Q, Zhang Y, Xu P, Zhang T, Zhang X, Zhao T, Wang W, Yang L (2022b) Temporal profiles, source analysis, and health risk assessments of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives (NPAHs, OPAHs, ClPAHs, and BrPAHs) in PM2.5 and PM1.0 from the eastern coastal region of China: Urban coastal area versus coastal background area. Chemosphere 292:133341. https://doi.org/10.1016/j.chemosphere.2021.133341
Wei C, Bandowe BA, Han Y, Cao J, Zhan C, Wilcke W (2015) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 134:512–520. https://doi.org/10.1016/j.chemosphere.2014.11.052
Wu S, Tao S, Xu F, Dawson R, Lan T, Li B, Cao J (2005) Polycyclic aromatic hydrocarbons in dustfall in Tianjin, China. Sci Total Environ 345:115–126
Wu Y, Yang L, Zheng X, Zhang S, Song S, Li J, Hao J (2014) Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci Total Environ 470:76–83
Xing J, Shao L, Zheng R, Peng J, Wang W, Guo Q, Wang Y, Qin Y, Shuai S, Hu M (2017) Individual particles emitted from gasoline engines: Impact of engine types, engine loads and fuel components. J Clean Prod 149:461–471. https://doi.org/10.1016/j.jclepro.2017.02.056
Xu S, Liu W, Tao S (2006) Emission of polycyclic aromatic hydrocarbons in China. Environ Sci Technol 40:702–708. https://doi.org/10.1016/j.scitotenv.2004.11.003
Yang L, Zhou X, Wang Z, Zhou Y, Cheng S, Xu P, Gao X, Nie W, Wang X, Wang W (2012) Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. Atmos Environ 55:506–514. https://doi.org/10.1016/j.atmosenv.2012.02.029
Yang WX, Gao H, Yang YP (2022a) Analysis of influencing factors of embodied carbon in china’s export trade in the background of “Carbon Peak” and “Carbon Neutrality.” Sustainability 14:20. https://doi.org/10.3390/su14063308
Yang WX, Gao H, Yang YP, Liao JC (2022b) Embodied carbon in china’s export trade: a multi region input-output analysis. Int J Environ Res Public Health 19:16. https://doi.org/10.3390/ijerph19073894
Yu Q, Yang W, Zhu M, Gao B, Li S, Li G, Fang H, Zhou H, Zhang H, Wu Z (2018) Ambient PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs) in rural Beijing: Unabated with enhanced temporary emission control during the 2014 APEC summit and largely aggravated after the start of wintertime heating. Environ Pollut 238:532–542. https://doi.org/10.1016/j.envpol.2018.03.079
Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. https://doi.org/10.1016/S0146-6380(02)00002-5
Zhang J, Yang L, Ledoux F, Courcot D, Mellouki A, Gao Y, Jiang P, Li Y, Wang W (2019) PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in rural and suburban areas in Shandong and Henan Provinces during the 2016 Chinese New Year’s holiday. Environ Pollut 250:782–791. https://doi.org/10.1016/j.envpol.2019.04.040
Zhang M, Xie J, Wang Z, Zhao L, Zhang H, Li MJAR (2016) Determination and source identification of priority polycyclic aromatic hydrocarbons in PM2. 5 in Taiyuan, China. 178: 401-414. https://doi.org/10.1016/j.atmosres.2016.04.005
Zhang Y, Tao S, Cao J, Coveney RM (2007) Emission of polycyclic aromatic hydrocarbons in China by county. Environ Sci Technol 41:683–687. https://doi.org/10.1021/es061545h
Zhu Y, Yang L, Meng C, Yuan Q, Yan C, Dong C, Sui X, Yao L, Yang F, Lu Y (2015) Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2. 5 of a business office area in Jinan, a heavily polluted city in China. Atmos Res 153:276–285. https://doi.org/10.1016/j.atmosres.2014.08.014
Zhu Y, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yao L, Yang F, Lu Y, Wang W (2014) Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources. Sci Total Environ 466–467:357–368. https://doi.org/10.1016/j.scitotenv.2013.07.030
Zhuo S, Du W, Shen G, Wang R, Pan X, Li T, Han Y, Li Y, Pan B, Peng X, Cheng H, Wang X, Shi G, Xing B, Tao S (2017) Urban air pollution and health risks of parent and nitrated polycyclic aromatic hydrocarbons in two megacities, southwest China. Atmos Environ 166:441–453. https://doi.org/10.1016/j.atmosenv.2017.07.051
Zielinska B, Arey J, Atkinson R, Ramdahl T, Winer AM, Pitts JN (1986) Reaction of dinitrogen pentoxide with fluoranthene. J Am Chem Soc 108:4126–4132. https://doi.org/10.1021/ja00274a045