Investigation of NOx in piloted stabilized methane-air diffusion flames using finite-rate and infinitely-fast chemistry based combustion models

Thermal Science and Engineering Progress - Tập 5 - Trang 144-157 - 2018
Rohit Saini1, Swetha Prakash1, Ashoke De1, Rakesh Yadav2
1Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208016, India
2ANSYS Inc., 5930 Cornerstone Court West, Suite 230, CA 92121 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sanders, 1997, Flamelet-based modeling of NO formation in turbulent hydrogen jet diffusion flames, Combust. Flame, 111, 1, 10.1016/S0010-2180(97)00094-1

Chen, 1995, Numerical simulation and scaling of NOx emissions from turbulent hydrogen jet flames with various amounts of helium dilution, Combust. Sci. Technol., 110, 505, 10.1080/00102209508951938

Chen, 1992, PDF modeling and analysis of thermal NO formation in turbulent nonpremixed hydrogen-air jet flames, Combust. Flame, 88, 397, 10.1016/0010-2180(92)90042-N

Yadav, 2014, NO prediction in turbulent diffusion flame using multiple unsteady laminar flamelet modeling, ASME J. Eng. Gas Turbines. Power, 136, 101515, 10.1115/1.4026801

Cuenot, 2000, An unsteady laminar flamelet model for non-premixed combustion, Combust. Theor. Model., 4, 77, 10.1088/1364-7830/4/1/305

Kim, 2007, Conditional moment closure and transient flamelet modelling for detailed structure and NO x formation characteristics of turbulent nonpremixed jet and recirculating flames, Combust. Theor. Model., 11, 527, 10.1080/13647830600985297

Pitsch, 1998, Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames, Proc. Combust. Inst., 27, 1057, 10.1016/S0082-0784(98)80506-7

Lysenko, 2014, Numerical simulations of the sandia flame d using the eddy dissipation concept, Flow Turbul. Combust., 93, 665, 10.1007/s10494-014-9561-5

Barths, 2000, Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model, Proc. Combust. Inst., 28, 1161, 10.1016/S0082-0784(00)80326-4

Barths, 1998, Simulation of pollutant formation in a gas-turbine combustor using unsteady flamelets, Proc. Combust. Inst., 27, 1841, 10.1016/S0082-0784(98)80026-X

Lee, 2008, Prediction of NO in turbulent diffusion flames using Eulerian particle flamelet model, Combust. Theor. Model., 12, 905, 10.1080/13647830802094351

Coelho, 2001, Unsteady modelling of a piloted methane/air jet flame based on the Eulerian particle flamelet model, Combust. Flame, 124, 444, 10.1016/S0010-2180(00)00226-1

Peters, 1987, The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism, Combust. Flame, 68, 17, 10.1016/0010-2180(87)90062-9

Lindstedt, 2000, Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry, Proc. Combust. Inst., 28, 149, 10.1016/S0082-0784(00)80206-4

Tang, 2000, Probability density function calculations of local extinction and NO production in piloted-jet turbulent methane/air flames, Proc. Combust. Inst., 28, 133, 10.1016/S0082-0784(00)80204-0

Roomina, 2001, Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame, Combust. Flame, 125, 1176, 10.1016/S0010-2180(01)00237-1

G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.J. Gardiner, V.V. Lissianski, GRI 3.0, Gas Research Institute, Chicago, IL, 2000 <http://www.me.berkeley.edu/gri_mech>.

Elbahloul, 2015, Rate-Controlled Constrained Equilibrium (RCCE) simulations of turbulent partially premixed flames (Sandia D/E/F) and comparison with detailed chemistry, Combust. Flame, 162, 2256, 10.1016/j.combustflame.2015.01.023

Chen, 2013, Large-eddy simulation of a piloted premixed jet burner, Combust. Flame, 160, 2896, 10.1016/j.combustflame.2013.07.009

M. Reddy, A. De, Numerical Investigation of Soot Formation in Turbulent Diffusion Flames Using Moss-Brookes Model, ASME 2014 Gas Turbine India Conference, 2014, GTIndia2014-8233.

Reddy, 2015, Effect of precursors and radiation on soot formation in turbulent diffusion flame, Fuel, 148, 58, 10.1016/j.fuel.2015.01.080

James, 2001, In Situ Detailed Chemistry Calculations in Combustor Flow Analyses, ASME J. Eng. Gas Turbines. Power, 123, 747, 10.1115/1.1384878

Frank, 2000, Radiation and nitric oxide formation in turbulent non-premixed jet flames, Proc. Combust. Inst., 28, 447, 10.1016/S0082-0784(00)80242-8

Ertesvåg, 2000, The eddy dissipation turbulence energy cascade model, Combust. Sci. Technol., 159, 213, 10.1080/00102200008935784

Magnussen, 1977, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Proc. Combust. Inst., 16, 719, 10.1016/S0082-0784(77)80366-4

Gran, 1996, A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry, Combust. Sci. Technol., 119, 191, 10.1080/00102209608951999

Barlow, 1998, Effects of turbulence on species mass fractions in methane/air jet flames, Proc. Combust. Inst., 27, 1087, 10.1016/S0082-0784(98)80510-9

Masri, 1996, The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements, Prog. Energ. Combust., 22, 307, 10.1016/S0360-1285(96)00009-3

Schneider, 2003, Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames, Combust. Flame, 135, 185, 10.1016/S0010-2180(03)00150-0

Stroomer, 1995

Ansys Fluent 16.0, Ansys Inc., Canonsburg, PA, USA, 2015.

Weller, 1998, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., 12, 620, 10.1063/1.168744

Stårner, 1985, Characteristics of a piloted diffusion flame designed for study of combustion turbulence interactions, Combust. Flame, 61, 29, 10.1016/0010-2180(85)90070-7

Xu, 2000, PDF calculations of turbulent nonpremixed flames with local extinction, Combust. Flame, 123, 281, 10.1016/S0010-2180(00)00155-3

Jones, 2010, Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method, Combust. Flame, 157, 1621, 10.1016/j.combustflame.2010.05.010

Peters, 1978, An asymptotic analysis of nitric oxide formation in turbulent diffusion flames, Combust. Sci. Technol., 19, 39, 10.1080/00102207808946862

Fox, 2003

Raman, 2005, Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion, Combust. Flame, 143, 56, 10.1016/j.combustflame.2005.05.002

Vujanović, 2009, Validation of reduced mechanisms for nitrogen chemistry in numerical simulation of a turbulent non-premixed flame, React. Kinet. Catal. Lett., 96, 125, 10.1007/s11144-009-5463-2

Ihme, 2008, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids, 20, 055110, 10.1063/1.2911047

Monaghan, 2012, Detailed multi-dimensional study of pollutant formation in a methane diffusion flame, Energ. Fuel, 26, 1598, 10.1021/ef201853k

Bozzelli, 1995, O+ NNH: A possible new route for NOx formation in flames, Int. J. Chem. Kinet., 27, 1097, 10.1002/kin.550271107

Ding, 2011, Numerical investigation of diluent nfluence on flame extinction limits and emission characteristic of lean-premixed H2–CO (syngas) flames, Int. J. Hydrogen Energy, 36, 3222, 10.1016/j.ijhydene.2010.11.097