Nghiên cứu về các vật liệu hỗ trợ Silica Mesopor và Graphene Oxit nhằm tăng cường độ ổn định điện hóa của điện cực enzym

Şevval Kaya1, Veli Şimşek1,2, Samet Şahin3
1Department of Biotechnology, Bilecik Seyh Edebali University, Bilecik, Turkey
2Department of Chemical Engineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
3Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, 11100, Bilecik, Turkey

Tóm tắt

Tóm tắtVật liệu silica mesopor (MSM) là các vật liệu được sử dụng rộng rãi trong nhiều ứng dụng nhờ vào cấu trúc lỗ đa dạng của chúng. Tuy nhiên, độ dẫn điện của MSM khá kém, điều này hạn chế việc sử dụng của chúng trong các ứng dụng điện hóa. Trong nghiên cứu này, các MSM được sử dụng rộng rãi có các thuộc tính cấu trúc khác nhau như MCM-41, MCM-48, SBA-15 và SBA-16 đã được tổng hợp và gia cố với graphene oxit (GO) để tạo ra các hỗ trợ composite dẫn điện cho việc cố định enzym. MSM đã được tổng hợp bằng phương pháp thủy nhiệt và được đặc trưng bằng các kỹ thuật như quang phổ hồng ngoại bốnier, tinh thể học tia X, kính hiển vi điện tử quét/khối phổ tia X năng lượng phân tán, và các kỹ thuật MAPPING. Dung dịch GO:MSM đã được chuẩn bị từ các vật liệu vừa tổng hợp và được phủ lên các điện cực in trên màn hình (SPE). Các composite tốt nhất đã được chọn dựa trên hiệu suất điện phân của chúng. Enzym glucose oxidase (GOx) sau đó đã được cố định trên các SPE được biến đổi bằng phương pháp đổ đơn giản để tạo ra các điện cực enzym. Hiệu suất điện phân của các điện cực enzym đã được khảo sát bằng cách sử dụng các nồng độ glucose khác nhau để chứng minh hoạt tính sinh học. Các thử nghiệm ổn định đã được thực hiện bằng cách đo lường trong ngày và giữa các ngày, cho thấy điện cực SPE/GO:MCM-41/GOx có hiệu suất ổn định hơn (gấp 3 lần) so với điện cực SPE/GO/GOx. Nghiên cứu này trình bày một khảo sát về MSM trộn với GO trong các hệ thống điện hóa enzym, cung cấp cái nhìn về việc sử dụng các vật liệu như vậy để bảo tồn hoạt tính enzym. Tóm tắt đồ họa

Từ khóa

#Silica mesopor #graphene oxit #điện cực enzym #độ ổn định điện hóa #cố định enzym

Tài liệu tham khảo

Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

Etienne M, Zhang L, Vilà N, Walcarius A (2015) Mesoporous materials-based electrochemical enzymatic biosensors. Electroanalysis 27(9):2028–2054

Walcarius A (2018) Silica-based electrochemical sensors and biosensors: recent trends. Curr Opin Electrochem 10:88–97

Øye G, Sjöblom J, Stöcker M (2001) Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv Colloid Interface Sci 89:439–466

Yang Z, Lu Y, Yang Z (2009) Mesoporous materials: tunable structure, morphology and composition. Chem Commun 17:2270–2277

Martínez-Carmona M, Gun’ko YK, Vallet-Regí M (2018) Mesoporous silica materials as drug delivery:“The Nightmare” of bacterial infection. Pharmaceutics 10(4):279

Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036

Bachari K, Guerroudj R, Lamouchi M (2017) Catalytic behavior of gallium-containing mesoporous silicas. Arab J Chem 10:S301–S305

Ouargli R, Hamacha R, Benharrats N, Boos A, Bengueddach A (2015) β-diketone functionalized SBA-15 and SBA-16 for rapid liquid–solid extraction of copper. J Porous Mater 22:511–520

Tu J, Wang R, Geng W, Lai X, Zhang T, Li N, Yue N, Li XJS, Chemical AB (2009) Humidity sensitive property of Li-doped 3D periodic mesoporous silica SBA-16. Sens Actuators B Chem 136(2):392–398

Boukoussa B, Hamacha R, Morsli A, Bengueddach A (2017) Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arab J Chem 10:S2160–S2169

Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Mater 2(1):17–26

Alfredsson V, Anderson MW (1996) Structure of MCM-48 revealed by transmission electron microscopy. Chem Mater 8(5):1141–1146

Cao Z, Du P, Duan A, Guo R, Zhao Z, Lei Zhang H, Zheng P, Xu C, Chen Z (2016) Synthesis of mesoporous materials SBA-16 with different morphologies and their application in dibenzothiophene hydrodesulfurization. Chem Eng Sci 155:141–152

Campanati M, Fornasari G, Vaccari A (2003) Fundamentals in the preparation of heterogeneous catalysts. Catal Today 77(4):299–314

Walcarius A, Mandler D, Cox JA, Collinson M, Lev O (2005) Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J Mater Chem 15(35–36):3663–3689

Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W (2021) Mesoporous materials–based electrochemical biosensors from enzymatic to nonenzymatic. Small 17(9):1904022

Zhi J, Wang Y, Deng S, Hu AJRA (2014) Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. Rsc Adv 4(76):40296–40300

Yang X, Li Z, Zhi J, Ma J, Hu AJL (2010) Synthesis of ultrathin mesoporous carbon through Bergman cyclization of enediyne self-assembled monolayers in SBA-15. Langmuir 26(13):11244–11248

Fang Y, Hu Q, Yu X, Wang L (2018) Ultrasensitive electrochemical immunosensor for procalcitonin with signal enhancement based on zinc nanoparticles functionalized ordered mesoporous carbon-silica nanocomposites. Sens Actuators, B 258:238–245

Kordasht HK, Pazhuhi M, Pashazadeh-Panahi P, Hasanzadeh M, Shadjou N (2020) Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: recent advances. Trends Anal Chem 124:115778

Zhou G, Fung KK, Wong LW, Chen Y, Renneberg R, Yang S (2011) Immobilization of glucose oxidase on rod-like and vesicle-like mesoporous silica for enhancing current responses of glucose biosensors. Talanta 84(3):659–665

Carlsson N, Gustafsson H, Thörn C, Olsson L, Holmberg K, Åkerman B (2014) Enzymes immobilized in mesoporous silica: a physical–chemical perspective. Adv Colloid Interface Sci 205:339–360

Magner E (2013) Immobilisation of enzymes on mesoporous silicate materials. Chem Soc Rev 42(15):6213–6222

Zhang J, Chen S, Tan X, Zhong X, Yuan D, Cheng Y (2014) Highly sensitive electrochemiluminescence biosensors for cholesterol detection based on mesoporous magnetic core–shell microspheres. Biotechnol Lett 36:1835–1841

Xu X, Lu P, Zhou Y, Zhao Z, Guo M (2009) Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA. Mater Sci Eng C 29(7):2160–2164

Zhou M, Shang L, Li B, Huang L, Dong S (2008) Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase-and oxidase-based biosensors. Biosens Bioelectron 24(3):442–447

Fang ZH, Lu LM, Zhang XB, Li HB, Yang B, Shen GL, Yu RQ (2011) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized in carbon nanotubes/SBA-15 film. Electroanalysis 23(10):2415–2420

Shimomura T, Sumiya T, Ono M, Itoh T, Hanaoka T-a (2012) An electrochemical biosensor for the determination of lactic acid in expiration. Procedia Chem 6:46–51

Mundaca-Uribe R, Bustos-Ramírez F, Zaror-Zaror C, Aranda-Bustos M, Neira-Hinojosa J, Pena-Farfal C (2014) Development of a bienzymatic amperometric biosensor to determine uric acid in human serum, based on mesoporous silica (MCM-41) for enzyme immobilization. Sens Actuators, B 195:58–62

Bai Y, Yang H, Yang W, Li Y, Sun C (2007) Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens Actuators, B 124(1):179–186

Zhang J, Zhu J (2009) A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose. Sci China, Ser B 52(6):815–820

Lai G, Zhang H, Yu A, Ju H (2015) In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay. Biosens Bioelectron 74:660–665

Wang K, Yang H, Zhu L, Liao J, Lu T, Xing W, Xing S, Lv Q (2009) Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified by Nafion and ordered mesoporous silica-SBA-15. J Mol Catal B 58(1–4):194–198

Caro-Jara N, Mundaca-Uribe R, Zaror-Zaror C, Carpinelli-Pavisic J, Aranda-Bustos M, Peña-Farfal C (2013) Development of a bienzymatic amperometric glucose biosensor using mesoporous silica (MCM-41) for enzyme immobilization and its application on liquid pharmaceutical formulations. Electroanalysis 25(1):308–315

Boujakhrout A, Sánchez E, Díez P, Sánchez A, Martínez-Ruiz P, Parrado C, Pingarrón JM, Villalonga R (2015) Single-walled carbon nanotubes/Au–mesoporous silica janus nanoparticles as building blocks for the preparation of a bienzyme biosensor. ChemElectroChem 2(11):1735–1741

Yusan S, Rahman MM, Mohamad N, Arrif TM, Latif AZA, MohdAznan MA, Wan WSB (2018) Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase on the Se-MCM-41 mesoporous composite. J Anal Methods Chem. https://doi.org/10.1155/2018/26873412018

Tvorynska S, Barek J, Josypcuk BJB (2022) Influence of different covalent immobilization protocols on electroanalytical performance of laccase-based biosensors. Bioelectrochemistry 148:108223

Şimşek V (2019) Investigation of catalytic sustainability of silica-based mesoporous acidic catalysts and ion-exchange resins in methyl acetate synthesis and characterizations of synthesized catalysts. Arab J Sci Eng 44(6):5301–5310

Veli S, Pinar A (2018) Characterization and catalytic performance of modified sba-16 in liquid phase reaction. Int J Chem React Eng 16(8):20170246

Li H, Wang S, Ling F, Li J (2006) Studies on MCM-48 supported cobalt catalyst for Fischer–Tropsch synthesis. J Mol Catal A 244(1–2):33–40

Şimşek V, Şahin S (2019) Characterization and catalytic performance evaluation of a novel heterogeneous mesoporous catalyst for methanol–acetic acid esterification. J Porous Mater 26:1657–1665

Şahin S, Kaya Ş, Üstündağ Z, Caglayan MO (2022) An electrochemical signal switch–based (on–off) aptasensor for sensitive detection of insulin on gold-deposited screen-printed electrodes. J Solid State Electrochem 26(4):907–915

Şahin S (2020) A simple and sensitive hydrogen peroxide detection with horseradish peroxidase immobilized on pyrene modified acid-treated single-walled carbon nanotubes. J Chem Technol Biotechnol 95(4):1093–1099

Huang HY, Yang RT, Chinn D, Munson CL (2003) Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind Eng Chem Res 42(12):2427–2433

Nasiriani T, Nazeri MT, Shaabani A (2023) Cobalt phthalocyanine conjugated SBA-15 mesoporous silica via the Ugi four-component reaction: a potential heterogeneous catalytic nanocomposite for CO2 fixation reaction. Microporous Mesoporous Mater 354:112514

Saikia L, Srinivas D, Ratnasamy P (2007) Comparative catalytic activity of Mn (Salen) complexes grafted on SBA-15 functionalized with amine, thiol and sulfonic acid groups for selective aerial oxidation of limonene. Microporous Mesoporous Mater 104(1–3):225–235

Colilla M, Izquierdo-Barba I, Sánchez-Salcedo S, Fierro JL, Hueso JL, Ma V-R (2010) Synthesis and characterization of zwitterionic SBA-15 nanostructured materials. Chem Mater 22(23):6459–6466

Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT (2010) Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J Porous Mater 17:475–484

Mirji S, Halligudi S, Mathew N, Jacob NE, Patil K, Gaikwad A (2007) Adsorption of methanol on mesoporous SBA-15. Mater Lett 61(1):88–92

Liu Q-Y, Wu W-L, Wang J, Ren X-Q, Wang Y-R (2004) Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol. Microporous Mesoporous Mater 76(1–3):51–60

Schumacher K, Ravikovitch PI, Du Chesne A, Neimark AV, Unger KK (2000) Characterization of MCM-48 materials. Langmuir 16(10):4648–4654

Sayari A, Han B-H, Yang Y (2004) Simple synthesis route to monodispersed SBA-15 silica rods. J Am Chem Soc 126(44):14348–14349

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon 45(7):1558–1565

Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206

Shen C, Wang H, Zhang T, Zeng Y (2019) Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites. J Mater Sci Technol 35(1):36–43

Sahin S, Wongnateb T, Chaiyenb P, Yu EH (2014) Glucose oxidation using oxygen resistant pyranose-2-oxidase for biofuel cell applications. Chem Eng Trans. https://doi.org/10.3303/CET1441062

Chaubey A, Malhotra B (2002) Mediated biosensors. Biosens Bioelectron 17(6–7):441–456

Lister AS (2005) Validation of HPLC methods in pharmaceutical analysis. In: Separation Science and Technology, vol 6. Elsevier, pp 191-217

Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511

Xiao X, Xia H-q, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A (2019) Tackling the challenges of enzymatic (bio) fuel cells. Chem Rev 119(16):9509–9558