Investigation of Binding Affinity Between Prokaryotic Proteins (AHU-IHF) and DNAs: Steered Molecular Dynamics Approach

Springer Science and Business Media LLC - Tập 186 Số 4 - Trang 834-846 - 2018
Hung Van Nguyen1, Tri Thanh Pham1, Hoang Linh Nguyen1, Tuyn Phan1
1Institute for Computational Science and Technology (ICST), Ho Chi Minh City, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

Drlica, K., & Rouviere-Yaniv, J. (1987). Histone like proteins of bacteria. Microbiological Reviews, 51(3), 301–319.

Pettijohn, D. E. (1988). Histone-like proteins and bacterial chromosome structure. Journal of Biological Chemistry, 263(26), 12793–12796.

Hamidon, N. H., Suraiya, S., Sarmiento, M. E., Acosta, A., Norazmi, M. N., & Lim, T. S. (2017). Immune TB antibody phage display library as a tool to study B cell immunity in TB infections. Applied Biochemistry and Biotechnology, 184(3), 852–868.

Griffith, A. J. F., Wessler, S. R., Carroll, S. B., & Doebley, J. An introduction to genetic analysis (10th ed.pp. 428–429). New York: W. H. Freeman and Company.

Wojtuszewski, K., Hawkins, M. E., Cole, J. L., & Mukerji, I. (2001). HU binding to DNA: evidence for multiple complex formation and DNA bending. Biochemistry, 40(8), 2588–2598.

Monu, & Meena, L. S. (2016). Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Applied Biochemistry and Biotechnology, 178(7), 1377–1389.

Mouw, K. W., & Rice, P. A. (2007). Shaping the Borrelia burgdorferi genome: crystal structure and binding properties of the DNA-bending protein Hbb. Molecular Microbiology, 63(5), 1319–1330.

Lorenz, M., Hillisch, A., & Diekmann, S. (2002). Fluorescence resonance energy transfer studies of U-shaped DNA molecules. Reviews in Molecular Biotechnology, 82(3), 197–209.

Chen, L., Guo, S., Wu, L., Fan, X., Ma, H., Wu, K., Wu, J., & Zhang, J. (2015). IL-17A autoantibody induced by recombinant Mycobacterium smegmatis expressing Ag85A-IL-17A fusion protein. Applied Biochemistry and Biotechnology, 176(7), 2018–2026.

Yang, C. C., & Nash, H. A. (1989). The interaction of E. coli IHF protein with its specific binding sites. Cell, 57(5), 869–880.

Kumari, P., & Meena, L. S. (2014). Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Applied Biochemistry and Biotechnology, 174(8), 2663–2673.

Sharma, S., & Meena, L. S. (2017). Potential of Ca2+ in Mycobacterium tuberculosis H37Rv pathogenesis and survival. Applied Biochemistry and Biotechnology, 181(2), 762–771.

Sorek, R., Lawrence, C. M., & Wiedenheft, B. (2013). CRISPR-mediated adaptive immune systems in bacteria and archaea. Annual Review of Biochemistry, 82(1), 237–266.

Boelens, R., Vis, H., Vorgias, C. E., Wilson, K. S., & Kaptein, R. (1996). Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy. Biopolymers, 40(5), 553–559.

Lynch, T. W., Read, E. K., Mattis, A. N., Gardner, J. F., & Rice, P. A. (2003). Integration host factor: putting a twist on protein-DNA recognition. Journal of Molecular Biology, 330, 493–502.

Broyles, S. S., & Pettijohn, D. E. (1986). Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome like structures with altered DNA helical pitch. Journal of Molecular Biology, 187(1), 47–60.

Bonnefoy, E., & Rouviere-Yaniv, J. (1991). HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. The EMBO Journal, 10(3), 687–696.

Swinger, K. K., Lemberg, K. M., Zhang, Y., & Rice, P. A. (2003). Flexible DNA bending in HU-DNA cocrystal structures. The EMBO Journal, 22(14), 3749–3760.

Nagaraja, R., & Haselkorn, R. (1994). Protein HU from the cyanobacterium Anabaena. Biochimie, 76(10-11), 1082–1089.

Yang, S. W., & Nash, H. A. (1995). Comparison of protein binding to DNA in vivo and in vitro: defining an effective intracellular target. The EMBO Journal, 14(24), 6292–6300.

Dang, G., Chen, L., Li, Z., Deng, X., Cui, Y., Cao, J., Yu, S., Pang, H., & Liu, S. (2015). Expression, purification and characterisation of secreted esterase Rv2525c from Mycobacterium tuberculosis. Applied Biochemistry and Biotechnology, 176(1), 1–12.

Shindo, H., Furubayashi, A., Shimizu, M., Miyake, M., & Imamoto, F. (1992). Preferential binding of E. coli histone-like protein HU alpha to negatively supercoiled DNA. Nucleic Acids Research, 20(7), 1553–1558.

Nash, H. A. (1996). The HU and IHF proteins: accessory factors for complex protein-DNA assemblies. In E. C. C. Lin & A. S. Lynch (Eds.), Regulation of gene expression in Escherichia coli (pp. 150–179). Austin: R. G. Landes Co..

Swinger, K. K., & Rice, P. A. (2006). Structure-based analysis of HU-DNA binding. Journal Molecular Biology, 365, 1005–1016.

Kim, D. H., Im, H., Jee, J. G., Jang, S. B., Yoon, H. J., Kwon, A. R., Kang, S. M., & Lee, B. J. (2014). β-Arm flexibility of HU from Staphylococcus aureus dictates the DNA-binding and recognition mechanism. Acta Crystallographica Section D: Structural Biology, 70(12), 3273–3289.

Lorenz, M., Hillisch, A., Goodman, S. D., & Diekmann, S. (1999). Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by fluorescence resonance energy transfer. Nucleic Acids Research, 27(23), 4619–4625.

Grove, A. (2011). Functional evolution of bacterial histone-like HU proteins. Current Issues in Molecular Biology, 13(1), 1–12.

Tan, C., Terakawa, T., & Takada, S. (2016). Dynamic coupling among protein binding, sliding, and DNA bending revealed by molecular dynamics. Journal of the American Chemical Society, 138(27), 8512–8522.

Vivas, P., Kuznetsov, S. V., & Ansari, A. (2008). New insights into the trasition pathway from nonspecific to specific complex of DNA with Escherichia Coli integration host factor. The Journal of Physical Chemistry B, 112(19), 5997–6007.

Christodoulou, E., Rypniewski, W. R., & Vorgias, C. E. (2003). High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritime and the determinants of its thermostability. Extremophiles, 7(2), 111–122.

Kamashex, D., Balandina, A., & Roviere-Yaniv, J. (1999). The binding motif recognized by HU on both nicked and cruciform DNA. The EMBO Journal, 18(19), 5434–5444.

Ghosh, S., & Grove, A. (2004). Histone-like protein HU from Deinococcus radiodurans binds preferentially to four-way DNA junctions. Journal of Molecular Biology, 337(3), 561–571.

Nguyen, H., & Le, L. (2015). Steered molecular dynamics approach for promising drugs for influenza A virus targeting channel proteins. European Biophysics Journal, 44(6), 447–455.

Nguyen, H., Tran, T., Fukunishi, Y., Higo, J., Nakamura, H., & Le, L. (2015). Computational study of drug binding affinity to influenza A Neuraminidase using smooth reaction path generation (SRPG) method. Journal of Chemical Information and Modeling, 55, 1936–1943.

Nguyen, H., Do, N., Phan, T., & Pham, T. (2018). Steered molecular dynamics for investigating the interactions between insulin receptor tyrosine kinase (IRK) and variants of protein tyrosine phosphatase 1B (PTP1B). Applied Biochemistry and Biotechnology, 184(2), 401–413.

Vuong, Q. V., Nguyen, T. T., & Li, M. S. (2015). A new method for navigating optimal direction for pulling ligand from binding pocket: application to ranking binding affinity by steered molecular dynamics. Journal of Chemical Information and Modeling, 55(12), 2731–2738.

Nguyen, H., Nguyen, T., & Le, L. (2016). Computational study of glucose-6-phophate-dehydrogenase deficiencies using molecular dynamics simulation. South Asian Journal of Life Sciences, 4(1), 32–39.

Nguyen, T. T., Mai, B. K., & Li, M. S. (2011). Study of Tamiflu sensitivity of variants of A/H5N1 virus using different force fields. Journal of Chemical Information and Modeling, 51(9), 2266–2276.

Huy, P. D. Q., & Li, M. S. (2014). Binding of fullerenes to amyloid beta fibrils: size matters. Physical Chemistry Chemical Physics, 16(37), 20030–20040.

Ivani, I., Dans, P. D., Noy, A., Pérez, A., Faustino, I., Hospital, A., Walther, J., Andrio, P., Goñi, R., Balaceanu, A., Portella, G., Battistini, F., Gelpí, J. L., González, C., Vendruscolo, M., Laughton, C. A., Harris, S. A., Case, D. A., & Orozco, M. (2016). Parmbsc1: a refined force field for DNA simulations. Nature Methods, 13(1), 55–58.

Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447.

Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960.

Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472.

Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092.

Hockney, R. W., Goel, S. P., & Eastwood, J. (1974). Quit high resolution computer models of plasma. Journal of Computational Physics, 14(2), 148–158.

Gibson, C. T., Carnally, S., & Roberts, C. J. (2007). Attachment of carbon nanotubes to atomic force microscope probes. Ultramicroscopy, 107(10-11), 1118–1122.

Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Science of the United States America, 98(18), 10037–10041.

Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 1196.

Duan, L., Liu, X., & Zhang, J. Z. (2016). Interaction entropy: a new paradigm for highly efficient and reliable computation of protein-ligand binding free energy. Journal of the American Chemical Society, 138(17), 5722–5728.

Nguyen, H., Nguyen, H. L., Linh, H. Q., & Nguyen, M. T. (2018). Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: molecular simulation approaches. Chemical Physics, 500, 26–36.