Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu bằng quang phổ ESR về các phân tử 1,10-phenanthrocyanines hoạt tính sinh học chứa điện tử d (Kính keo mềm)
Tóm tắt
Các phân tử 1,10-phenanthrocyanines của các yếu tố d đã được nghiên cứu bằng quang phổ ESR, cả trong trạng thái rắn (thủy tinh) và trong dung dịch. Đây là các hợp chất phối hợp thuộc một lớp cấu trúc mới của apocyanines: các phức cation nhị phân chromophore [M2+Ln(µ-PC)]2Xm (M2+ = Zn2+, Cd2+, Co2+, Pd2+ và Pt2+; L = 1,10-phenanthroline, 2,9-Me2-1,10-phenanthroline, pyridine; X = AcO−, Cl−) với các ligand 1,10-phenanthrocyanine cầu nối giàu electron µ-PC. Chúng được trình bày như là các kính keo mềm có khả năng hoạt động như các tác nhân ức chế sự phát triển của tế bào tumor, thuốc diệt nấm và các hợp chất phức DNA. Nghiên cứu chúng bằng quang phổ ESR cho thấy rằng một trong những cơ chế có thể cho sự hình thành trung tâm spin là các quá trình chuyển tiếp S0 → Tlow, được chỉ hướng nhiệt.
Từ khóa
#quang phổ ESR #1 #10-phenanthrocyanines #hợp chất phối hợp #cation nhị phân #kính keo mềm #hoạt tính sinh học #ức chế sự phát triển tế bào #thuốc diệt nấm #phức DNATài liệu tham khảo
S.P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice Hall, Englewood Cliffs, 1969)
V.N. Parmon, A.I. Kokorin, G.M. Zhidomirov, Stable Biradicals (Nauka, Moscow (in Russian), 1980)
E.G. Rosantsev, Organic paramagnetics, in: Saratov StateUniv., ed. by E.G. Rosantsev, M.D. Gol’dfeyn, V.F. Pulin (Saratov, 2000) (in Russian)
M.D. Gol’dfeyn, E.G. Rosantsev, Free radicals and organic paramagnetics. Univ. Proc. Volga Region 1(5), 60–72 (2014). (in Russian)
E.V. Tretyakov, V.I. Ovcharenko, The chemistry of nitroxides in the molecular design of magnets. Russ. Chem. Rev. 78(11), 971–1012 (2009). https://doi.org/10.1070/RC2009v078n11ABEH004093
C. Wentrup, M.J. Regimbald-Krnel, D. Müller, P. Comba, A thermally populated, perpendicularly twisted alkene triplet diradical. Angew. Chem. Int. Ed. 55(47), 14600–14605 (2016). https://doi.org/10.1002/anie.201607415
Y. Morita, T. Aoki, K. Fukui, S. Nakazawa, K. Tamaki, S. Suzuki, A. Fuyuhiro, K. Yamamoto, K. Sato, D. Shiomi, A. Naito, T. Takui, K. Nakasuji, A new trend in phenalenyl chemistry: a persistent neutral radical, 2,5,8-tri-tertbutyl-1,3-diazaphenalenyl, and the excited triplet state of the gable syn-dimer in the crystal of column motif. Angew. Chem. Int. Ed. 41(10), 1793–1796 (2002). https://doi.org/10.1002/1521-3773(20020517)41:10%3c1793::AID-ANIE1793%3e3.0.CO;2-G
K.K. Kalninsh, A.F. Podolsky, Triplet mechanism of depolymerization of sodium poly-α-methylstiryl. Macromolec. Comp. A. 42(5), 751–758 (2000). (in Russian)
K.K. Kalninsh, E.F. Panarin, Excited States in Chemistry of Polymers. (EPC St. Petersburg State UTD, St. Petersburg, 2007), p. 476 (ISBN 5-7937-0318-7) (in Russian)
K.K. Kalninsh, Electronic Excitation in Chemistry. (Inst. Macromol. Comp. RAS, St. Petersburg, 1998), p. 323 (ISBN 5-7937-0009-9) (in Russian)
M.-D. Li, T.R. Albright, P.J. Hanway, Direct spectroscopic detection and EPR investigation of a ground state triplet phenyl oxenium ion. J. Am. Chem. Soc. 137(32), 10391–10398 (2015). https://doi.org/10.1021/jacs.5b06302
R.G. Pearson, Symmetry rules for chemical reactions: orbital topology and elementary processes (A Wiley-Interscience Publ, New York, 1976)
B.H. Lavenda, Statistical Physics: A Probabilistic Approach (Wiley-Interscience, New York, 1991), p.384
B.H. Lavenda, A New Perspective on Thermodynamics (Springer, New York, 2010), p. 220. https://doi.org/10.1007/978-1-4419-1430-9
V.N. Demidov, An expression for the frequencies of the spectral bands of quasi-lattice translational vibrations of liquids in terms of a new thermodynamic model. J. Opt. Technol. 70(9), 623–627 (2003). https://doi.org/10.1364/JOT.70.000623
V.N. Demidov, V.S. Antonov, Structural-thermodynamic self-similarity of low-energy vibrationally excited states of partially ordered condensed media. News St. Petersburg State Institute of Technology (Technical Univ.), pp. 20–24 (2010) (in Russian)
V.N. Demidov, S.M. Sukharzhevsky, L.N. Vedeneeva, A.V. Zinchenko, T.B. Pakhomova, Investigation of the electron-rich binuclear Pt(II) 1,10-phenanthrocyanine [(py)2Pt(µ-phencyanine─)Pt(py)2]Cl3 by the ESR method. Localization of PSC in temperature accessible electron-excited radical states. 15th Int. School-Conf. Magnetic Resonance and its applications (Spinus-2018). April 1–6, 2018, St. Petersburg, Russia, Abstr., pp. 160–162
V.N. Demidov, S.M. Sukharzhevsky, S.V. Paston, A.V. Zinchenko, L.N. Vedeneeva, T.B. Pakhomova, Thermoinduced S0→T-transitions in electron-rich Zn(II) 1,10-phenanthrocyanines, DNA complexones containing dihydro-1,10-phenanthroline cycles related to NADH. News St. Petersburg State Univ. Ser.4, Phys., Chem. 4(62), 138–145 (2017). https://doi.org/10.21638/11701/spbu04.2017.203 (in Russian)
I.B. Glebova, A.G. Badalyan, V.N. Demidov, R.D. Rochev, Cd(II) 1,10-phenanthrocyanines (bi-1,10-phenanthrolylenes): thermophysics of lowest electron triplet biradical states of soft colloidal glasses. II All-Russ. Conf. Abstr. “Organic radicals: fundamental and applied aspects”. 15–16 Dec. 2022, Moscow, p. 76 (in Russian)
V.N. Demidov, S.M. Sukharzhevsky, A.G. Ivanova, N.E. Kotelnikova, Investigation of hybrid composite of cellulose hydrogel and electron-rich Zn(II) 1,10-phenanthrocyanine complex by ESR spectroscopy method. II All-Russ. Conf. Abstr. “Organic radicals: fundamental and applied aspects”. 15–16 Dec. 2022, Moscow, p. 75 (in Russian)
V.N. Demidov, S.A. Simanova, A.I. Savinova, T.B. Pakhomova, Reactions of metal promoted C-C- coupling of coordinated 1,10-phenanthrolines in the synthesis of electron-rich d-element 1,10-phenanthrocyanines. Russ. J. Gen. Chem. 79(12), 2807–2814 (2009). https://doi.org/10.1134/S1070363209120391
V.N. Demidov, Electron-rich 1,10-phenanthrocyanine complexes of d-elements: patterns of formation, spectral properties, structural and thermodynamic similarity—Diss. Doct. Chem. Sci., St. Petersburg State Technol. Inst. (Techn. Univ.), St. Petersburg, 2010, p. 450 (in Russian)
O.N. Chupakhin, V.N. Charushin, Recent advances in the field of nucleophilic aromatic substitution of hydrogen. Tetrahedron Lett. 57(25), 2665–2672 (2016). https://doi.org/10.1016/j.tetlet.2016.04.084
V.N. Charushin, O.N. Chupakhin, Metal-free C-H functionalization of aromatic compounds through the action of nucleophilic reagents. Top. Heterocycl. Chem. 37, 1–50 (2014). https://doi.org/10.1007/7081_2013_119
M. Okamoto, Rheology of polymer/clay nanocomposites: development of mesoscale structure and dynamics of soft glasses. in Nano- and Biocomposites. ed. by A.K.-T. Lau, F. Hussain, K. Lafdi. (CRC Press, Taylor and Francis Group, New York, 2010), p. 71–92
S.V. Paston, V.M. Bakulev, V.N. Demidov, A.I. Nikolayev, N.A. Kasyanenko, Investigation of the interaction of DNA with a new 1,10-phenanthrocyanine zinc complex by spectral methods. News St. Petersburg State Univ. Ser. 4, Phys. Chem. 2(60), 299–304 (2015) (in Russian)
V.N. Demidov, N.A. Kas’yanenko, V.S. Antonov, I.L. Volkov, P.A. Sokolov, T.B. Pakhomova, S.A. Si-manova, Reaction with DNA and pharmacologic activity of 1,10-phenanthroline and electron-rich 1,10-phenanthrocyanine complexes of d-elements. Russ. J. Gen. Chem. 82(3), 602–620 (2012). https://doi.org/10.1134/S1070363212030401
L. Viganor, O. Howe, P. McCarron, M. McCann, M. Devereux, The antibacterial activity of metal complexes containing 1,10-phenanthroline: potential as alternative therapeutics in the era of antibiotic resistance. Curr. Top. Med. Chem. 17(11), 1280–1302 (2017). https://doi.org/10.2174/1568026616666161003143333
A. Kellett, M. O’Connor, M. McCann, O. Howe, A. Casey, P. McCarron, K. Kavanagh, M. McNamara, S. Kennedy, D.D. May, P.S. Skell, D. O’Shea, M. Devereux, Water-soluble bis(1,10-phenanthroline) octanedioate Cu2+ and Mn2+ complexes with unprecedented nano and picomolar in vitro cytotoxicity: promising leads for chemotherapeutic drug development. Med. Chem. Comm. 2(7), 579–584 (2011). https://doi.org/10.1039/C0MD00266F
A.N. Terenin, Photochemical processes in aromatic compounds. J. Phys. Chem. 17(1), 1–12 (1944). ((in Russian))
A.N. Terenin, Selected works. 2, Elementary photo-processes in complex organic molecules, ed. by A.A. Krasnovsky, 32–113 (Science, Leningrad, 1974), p. 474 (in Russian)
A.A. Krasnowsky, A.V. Umrikhina, I.V. Bublitchenko, Free radicals in photochemical reactions of chlorophyll, in Spectroscopy of Phothoconversions in Molecules, ed. A.A. Krasnovsky, 106–127, (Science, Leningrad, 1977) , p. 312 (in Russian)
A.N.Terenin, Selected works. 2, Elementary photo-processes in complex organic molecules, ed. by A.A. Krasnovsky, 360–374, (Science, Leningrag, 1974), p. 474 (in Russian)
A.A. Buglak, A.I. Kononov, Triplet state generation by furocoumarins revisited: a combined QSPR/DFT approach. New J. Chem. 42(17), 14424–14432 (2018). https://doi.org/10.1039/c8nj03002b
Matern. Reactions of azines and their dihydrogen derivatives. The role of electronic transfer in the processes of forming and breaking bonds. Abstr. Dissert. Doctor Chem. Sci. 02.00.03 (Ural State Technical Univer. Ekaterinburg, 2007), p. 47 (in Russian)
N.S. Panina, V.N. Demidov, S.A. Simanova, A DFT study of 2,2’-bi-1,10-phenanthroline and its reduced form as a potential ligand for new tetraaza chromophore complexes. Russ. J. Gen. Chem. 78(5), 913–918 (2008). https://doi.org/10.1134/S1070363208050137
N.S. Panina, V.N. Demidov, S.A. Simanova, A DFT study of transition metal complexes with 1,10-phenanthroline, C-C-dimeric 2,2’-bi-1,10- phenanthroline, and its tetraaza chromophore anion. Russ. J. Gen. Chem. 78(5), 919–924 (2008). https://doi.org/10.1134/S1070363208050149
Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82(1), 270–283 (1985). https://doi.org/10.1063/1.448799. https://jcp.aip.org/resource/1/JCPSA6/v82/i1
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguen, S.J. Su, T.L. Windus, M. Dupius, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 14(11), 1347–1363 (1993). https://doi.org/10.1002/jcc.540141112
J.G. Dorfman, Diamagnetism and Chemical Bonding (State Publishing House of Phys. and Mathemat. Literat. M, 1961), p. 231 (in Russian)
C.J. Finder, M.G. Newton, N.L. Alliger, An improved structure of trans-stilbene. Acta Cryst. B30, 411–415 (1974). https://doi.org/10.1107/S0567740874002913
H. Mustroph, Apocyanine dyes. Phys. Sci. Rev. 6(6), 175–177 (2021). https://doi.org/10.1515/psr-2020-0147
K. Afarinkia, M.-R. Ansari, C.W. Bird, I. Gyambibi, A reinvestigation of the structure of the erythro- and xanthoapocyanine dyes: some unusual aspects of quinoline chemistry. Tetrahedron Lett. 37(27), 4801–4804 (1996). https://doi.org/10.1016/0040-4039(96)00940-9
F. Kröhnke, H. Dickhäuser, I. Vogt, Zur konstitution der sogenannten xantho-apocyanine. Justus Liebigs Ann. Chem. 644(1), 93–108 (1961). https://doi.org/10.1002/jlac.19616440112
E. Calzavara, The procyanines. I. Diquinolyls and procyanines: the 2,3’-biquinoline-procyanines. Sci. Ind. Phot. 10, 193 (1939)
D. Seebach, Methods of reactivity umpolung. Angew. Chem. Int. Ed. Engl. 18(4), 239–258 (1979). https://doi.org/10.1002/anie.197902393
M.A. Ivanov, Preparation, spectroscopic and electrochemical properties of Au(III), Pt(II) and Pd(II) complexes with heterocyclic chelating and cyclometallated ligands.—Abstr. Dissert. Candid. Chem. Sci., St. Petersburg (2005), p. 19 (in Russian)
K.P. Balashev, E.A. Cerezova, M.A. Ivanov, T.A. Tkacheva, Spectroscopic and electrochemical properties of mixed-ligand cyclopalladinized complexes of deprotonated forms of 2-(2-thienyl)pyridine and 2-phenylpyridine with 1,10-phenanthroline and its 1,4-diazine derivatives. Russ. J. Gen. Chem. 76(7), 1150–1156 (2006). https://doi.org/10.1134/S1070363206070267
A.G. Panova, Mono-, bi- and tetranuclear cyclometallated Pd(II) and Pt(II) complexes with bridged 4,4′-bipyridyl and acetate ligands.—Abstr. Dissert. Candid. Chem. Sci., St. Petersburg (2011), p. 17 (in Russian)
A.G. Panova, K.A. Radyushin, K.P. Balashev, Cyclopalladated complexes based on 2-phenylbenzothiazole and 1,4-(benzothiazol-2-yl)benzene with acetate ligands and ethylenediamine. Russ. J. Gen. Chem. 81(4), 743–746 (2011). https://doi.org/10.1134/S1070363211040219
A.G. Panova, K.P. Balashev, Cyclopalladated complexes of 2-phenylbenzothiazole with 4,4’-bipyridyl. Russ. J. Gen. Chem. 81(4), 747–750 (2011). https://doi.org/10.1134/S1070363211040220
A.I. Rusanov, M.M. Schultz and chemical thermodynamics. News St. Petersburg State Univ. Ser. 4, 1, 149–152 (2010) (in Russian)
A. Toikka, Some formulations of the Le Chatelier-–Brown principle. J. Phys. Chem. 64, 2557–2559 (1990). (in Russian)
D. Gromov, A. Toikka, Toward formal analysis of thermodynamic stability: Le Chatelier-–Brown principle. Entropy 22(1113), 1–16 (2020). https://doi.org/10.3390/e22101113
A.A. Gukhman, On the Foundations of Thermodynamics (Moscow, LKI Ed., 2019), p. 384 (in Russian) (ISBN 978-5-382-01911-6)
J.E. Wetrz, J.E. Bolton, Electron Spin Resonance. Elementary Theory and Practical Applications (McGray-Hill Book Comp., New York, 1972)
J. Casado, S. Patchkovskii, M.Z. Zgierski, L. Hermosilla, C. Sieiro, M.M. Oliva, J.T.L. Navarrete, Raman detection of “ambiguous” conjugated biradicals: rapid thermal singlet-to-triplet intersystem crossing in an extended viologen. Angew. Chem. Int. Ed. 47(8), 1443–1446 (2008). https://doi.org/10.1002/anie.200704398
X. Yin, J.Z. Low, K.J. Fallon, D.W. Paleyb, L.M. Campos, The butterfly effect in bisfluorenylidene-based dihydroacenes: aggregation induced emission and spin switching. Chem. Sci. 10, 10733–10739 (2019). https://doi.org/10.1039/c9sc04096j
A. Minsky, A.Y. Meyer, R. Poupko, M. Rabinovitz, Paramagnetism and antiaromaticity: singlet-triplet equilibrium in doubly charged benzenoid polycyclic systems. J. Amer. Chem. Soc. 105, 2164–2172 (1983)
M.I. Valitov, G.M. Fazleeva, M.K. Kadirov, E.S. Nefediev, EPR of organic and fullerene cluster biradicals based on 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl. Bull. Kazan Technol. Univ. 15(16), 16–18 (2012) (in Russian)
M.K. Kadirov, E.V. Tretyakov, K.V. Kholin, E.S. Nefediev, V.I. Ovcharenko, O.G. Sinyashin, Exchange interactions in multi-spin systems based on nitronyl nitroxyl radicals. Bull. Kazan Technol. Univ. 4, 36–40 (2011). (in Russian)
Y. Su, X. Wang, L. Wang, Z. Zhang, X. Wang, Y. Song, P.P. Power, Thermally controlling the singlet–triplet energy gap of a diradical in the solid state. Chem. Sci. 7, 6514–6518 (2016). https://doi.org/10.1039/c6sc01825d
S. Fukuzumi, K. Ohkubo, M. Ishida, C. Preihs, B. Chen, W.T. Borden, D. Kim, J.L. Sessler, Formation of ground state triplet diradicals from annulated rosarin derivatives by triprotonation. J. Am. Chem. Soc. 137(31), 9780–9783 (2015). https://doi.org/10.1021/jacs.5b05309
L. Wang, Y. Fang, H. Mao, Y. Qu, J. Zuo, Z. Zhang, G. Tan, X. Wang, An Isolable diboron-centered diradical with a triplet ground state. https://doi.org/10.1002/chem.201701308
JPh. Grivet, ESR of acridine in its metastable triplet state. Chem. Phys. Lett. 11(3), 267–270 (1971). https://doi.org/10.1016/0009-2614(71)80480-3
H. Schmidt, ESR Triplet exciton spectrum of acridine orange. Z. Naturforsch. A. 26, 763–768 (1971). https://doi.org/10.1515/zna-1971-0422
Y. Kubota, M. Miura, The excited states of acridine dyes. I. An ESR study of the triplet state. Bull. Chem. Soc. Japan 42, 2763–2767 (1969)
C. Zhang, Y. Zhang, K. Fan, Q. Zou, Y. Chen, Y. Wu, S. Bao, L. Zheng, J. Ma, C. Wang, Diradicals or zwitterions: the chemical states of m-benzoquinone and structural variation after storage of Li ions. CCS Chem. 3, 2812–2825 (2021). https://doi.org/10.31635/ccschem.021.202101333
T.-G. Zhan, T.-Y. Zhou, F. Lin, L. Zhang, C. Zhou, Q.-Y. Qi, Z.-T. Li, X. Zhao, Supramolecular radical polymers self-assembled from the stacking of radical cations of rod-like viologen di- and trimers. Org. Chem. Front. 3, 1635–1645 (2016). https://doi.org/10.1039/c6qo00298f
H. Yi, A. Jutand, A. Lei, Evidence for the interaction between tBuOK and 1,10-phenanthroline to form the 1,10-phenanthroline radical anion: a key step for the activation of aryl bromides by electron transfer. Chem. Commun. 51(3), 545–548 (2015). https://doi.org/10.1039/C4CC07299E
A. Kostenko, B. Tumanskii, M. Karni, S. Inoue, M. Ichinohe, A. Sekiguchi, Y. Apeloig, Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond. Angew. Chem. Int. Ed. 54, 12144–12148 (2015). https://doi.org/10.1002/anie.201506291
Yu.V. Krasnikova, Experimental study of spin dynamics of “spin ladder” type magnets, Diss. Cand. Phys.-Math. Sci., Moscow (2020) (in Russian)
D.B. Chesnut, W.D. Phillips, EPR Studies of spin correlation in some ion radical salts. J. Chem. Phys. 35(3), 1002–1012 (1961)
R.P. Sartoris, V.T. Santana, E. Freire, R.F. Baggio, O.R. Nascimento, R. Calvo, Exchange couplings and quantum phases in two dissimilar arrays of similar copper dinuclear units. Dalton Trans. 49, 5228–5240 (2020). https://doi.org/10.1039/d0dt00567c
J.A. Weil, J. Bolton, Electron paramagnetic resonance, 2nd edn. (Wiley, Hoboken, 2007)
B. Bleaney, K.D. Bowers, Anomalous paramagnetism of copper acetate. Proc. R. Soc. Lond. Ser. A. 214, 451–465 (1952). https://doi.org/10.1098/rspa.1952.0181
K.K. Kalninsh, Hydrogen transfer in organic chemistry (St Petersburg, IPC StPtSUTD, 2012), p.417. (in Russian)
Berlin Alfred Anisimovitch, Selected works. Memoirs of contemporaries, ed. by a corresponding member. RAS Al. Al. Berlin, M., Science (2002), p. 362 (in Russian)
A.M. Timonov, S.V. Vasilyeva, Electronic conductivity of polymer compounds. Soros. Educ. J. 6(3), 33–39 (2000). (in Russian)
L.A. Blumenfeld, A.A. Berlin, N.G. Matveeva, A.E. Kalmanson, Polymers with conjugated bonds in chains of macromolecules. IV. On some features of polymer compounds containing heteroatoms and conjugation chains. Macromol. Comp. 1(11), 1647–1651 (1959). (in Russian)
G.A. Lapitsky, S.M. Makin, A.A. Berlin, On the nature of the EPR signal in polymers with a system of conjugated bonds. Macromol. Comp. 10(9), 712–714 (1968). (in Russian)
A.A. Berlin, Features of properties of polyconjoint systems and their application for stabilization and modification of high polymers. Macromol. Comp. 13(2), 276–293 (1971). (in Russian)
A.A. Berlin, G.A. Vinogradov, Yu.A. Berlin, Intermolecular interactions and paramagnetism of polymers with conjugation system. Macromol. Comp. (A) 22(4), 862–867 (1980). (in Russian)
S.К. Lower, Μ.Α. Ε1-Sayed, The triplet state and molecular electronic processes in organic molecules. Adv. Phys. Sci. 94(2), 289–351 (1968) (in Russian) (Chem. Rev. 66, 199 (1966))
A. Seeboth, D. Lötzsch, Thermochromic and Thermotropic Materials (Taylor & Francis Group, LLC, New York, 2013), p. 208. https://doi.org/10.1201/b16299
E.G. Rozantsev, Free iminoxyl radicals (1970), p. 216 (in Russian)
I.B. Klenina, Z.K. Makhneva, A.A. Moskalenko, A.N. Kuzmin, I.I. Proskuryakov, Singlet-triplet division of excitation in light-collecting complexes of purple photosynthetic bacteria and in isolated carotenoids. Biophys. 58(1), 54–63 (2013) (in Russian) (Biophysics 58(1), 43–50 (2013))
I.B. Klenina, Z.K. Makhneva, A.A. Moskalenko, N.D. Gudkov, M.A. Bolshakov, E.A. Pavlova, I.I. Proskuryakov, Singlet-triplet division of excitation of carotenoids of light-collecting complexes of LH2 purple phototrophic bacteria. Biochemistry 79(3), 310–317 (2014). (in Russian)
S. Hammes-Schiffer, A.A. Stuchebrukhov, Theory of coupled electron and proton transfer reactions. Chem. Rev. 110(12), 6939–6960 (2010). https://doi.org/10.1021/cr1001436
J.J. Warren, T.A. Tronic, J.M. Mayer, Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110(12), 6961–7001 (2010). https://doi.org/10.1021/cr100085k
R.I. Cukier, Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochim. Biophys. Acta 1655, 37–44 (2004). https://doi.org/10.1016/j.bbabio.2003.06.011
J.M. Mayer, I.J. Rhile, Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs. concerted pathways. Biochim. Biophys. Acta 1655, 51–58 (2004). https://doi.org/10.1016/j.bbabio.2003.07.002
M. Yagi, T. Kaneshima, M. Torii, K. Matsuo, J. Higuchi, Effects of counterion on the triplet states of zinc(II) complexes with 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline. Chem. Phys. Lett. 197(4–5), 457–460 (1992). https://doi.org/10.1016/0009-2614(92)85800-P
H. Fujita, S. Kako, H. Ohya-Nishiguchi, Y. Deguchi, Triplet state ESR of 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline metal chelates. Chem. Lett. 3(2), 131–132 (1974)
S. Valente, P. Mellini, F. Spallotta, V. Carafa, A. Nebbioso, L. Polletta, I. Carnevale, S. Saladini, D. Trisciuoglio, C. Gabellini, M. Tardugno, C. Zwergel, C. Cencioni, S. Atlante, S. Moniot, C. Steegborn, R. Budriesi, M. Tafani, D. Del Bufalo, L. Altucci, C. Gaetano, A. Mai, 1,4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function, and exhibit inhibition of proliferation in cancer cells. J. Med. Chem. 59(4), 1471–1491 (2016). https://doi.org/10.1021/acs.jmedchem.5b01117
D. Viradiya, S. Mirza, F. Shaikh, R. Kakadiya, A. Rathod, N. Jain, R. Rawal, A. Shah, Design and synthesis of 1,4-dihydropyridine derivatives as anticancer agent. Anticancer Agents Med. Chem. 17(7), 1003–1013 (2017). https://doi.org/10.2174/1871520616666161206143251
T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
J.K. Barton, J.J. Dannenberg, A.L. Raphael, Enantiomeric selectivity in binding tris(phenanthroline) zinc(II) to DNA. J. Am. Chem. Soc. 104(18), 4967–4969 (1982). https://doi.org/10.1021/ja00382a048
E.V. Akulenkova, V.N. Demidov, A.O. Martynova, S.V. Paston, The interaction of DNA with phenanthroline and new phenanthrocyanine complexes of Zn(II). Biophysics 66(1), 17–24 (2021). https://doi.org/10.1134/S0006350921010048