Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters
Tóm tắt
One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.
Tài liệu tham khảo
B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40(17), 5181–5192 (2006)
J. Li, An experimental study of microbial fuel cells for electricity generating: performance characterization and capacity improvement. J. Sustain. Bioenergy Syst. 3, 171–178 (2013)
P.K. Barua, D. Deka, Electricity generation from biowaste based microbial fuel cells. Int. J. Energy Inf. Commun. 1(1), 77–92 (2010)
A. Parkash, Characterization of generated voltage, current, power and power density from cow dung using double chambered microbial fuel cell. J. Phys. Chem. Biophys. 6(2), 1–5 (2016)
N.S.N. Hisham, SMd Zain, S. Jusoh, N. Anuar, F. Suja, A. Ismail, N.E.A. Basri, Microbial fuel cells using different types of wastewater for electricity generation and simultaneously removed pollutant. J. Eng. Sci. Technol. 8(3), 316–325 (2013)
H. Ashoka, R. Shalini, P. Bhat, Comparative studies on electrodes for the construction of microbial fuel cell. Int. J. Adv. Biotechnol. Res. 3(4), 785–789 (2012)
H. Tursun, R. Liu, J. Li, R. Abro, X. Wang, Y. Gao, Y. Li, Carbon material optimized biocathode for improving microbial fuel cell performance. Front. Microbiol. 7(6), 1–9 (2016)
Y. Zhang, J. Sun, Y. Hu, Z. Wang, S. Li, Effects of periodically alternating temperatures on performance of single-chamber microbial fuel cells. Int. J. Hydrogen Energy 39(15), 8048–8054 (2014)
L. Wei, H. Han, J. Shen, Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell. Int. J. Hydrogen Energy 38(25), 11110–11116 (2013)
J.S. Sudarsan, K. Prasana, S. Nithiyanantham, K. Renganathan, Comparative study of electricity production and treatment of different wastewater using microbial fuel cell (MFC). Environ. Earth Sci. 73, 2409–2413 (2015)
A. Muralidharan, O.K.A. Babu, K. Nirmalraman, M. Ramya, Impact of salt concentration on electricity production in microbial hydrogen based salt bridge fuel cells. Indian. J. Fundam. Appl. Life Sci. 1(2), 178–184 (2011)
A. Parkash, Impact of salt bridge on electricity generation from hostel sewage sludge using double chambered microbial fuel cell. Res. Rev. J. Eng. Technol. 1, 13–18 (2015)
A. El-Hag, O.M. Ali, R. Gomaa, H.Abd Fathey, A.E. Kareem, Md.A. Zaid, Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production. J. Fuel Chem. Technol. 43(9), 1092–1099 (2015)
J. Choulera, G.A. Padgetta, P.J. Cameron, K. Preuss, M.M. Titirici, I. Ieropoulos, M.D. Lorenzo, Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim. Acta 192, 89–98 (2016)
S.A. Idris, F.N. Esat, A.A.A. Rahim, W.A.Z.R.W. Ruzlee, W.M.Z. Razali, Electricity generation from the mud by using microbial fuel cell. MATEC Web Conf. 69(02001), 1–4 (2016)
S. Kumar, H.D. Kumar, K. Gireesh Babu, A study on the electricity generation from the cow dung using microbial fuel cell. J. Biochem. Technol. 3(4), 442–447 (2012)
P.J. Ross, Taguchi Techniques for Quality Engineering, 1st edn. (McGraw-Hill Book Company, New York, 1988), pp. 118–124
D. Sarma, M. Das, B. Brahma, D. Pandwar, S. Rongphar, M. Rahman, Investigation and parameter optimization of a hydraulic ram pump using taguchi method. J. Inst. Eng. India Ser. C 97(4), 551–559 (2016)
M. Telsang, Demand forecasting, Industrial Engineering & Production Management, 2nd edn. (S. Chand & Company Ltd, New Delhi, 2002), pp. 206–208
W.F. Liu, S.A. Cheng, Microbial fuel cells for energy production from wastewaters: the way toward practical application. J. Zhejiang Univ. Sci. A (App. Phys. Eng.) 15(11), 841–861 (2014)