Nghiên cứu cơ chế gắn kết chất nền của sulfotransferase 2A1 dựa trên phân tích đường hầm chất nền: một nghiên cứu mô phỏng động lực học phân tử

Journal of Molecular Modeling - Tập 22 - Trang 1-6 - 2016
Li Zhao1, Pupu Zhang1,2, Shiyang Long1, Linlin Wang1,3, Hanyong Jin4, Weiwei Han4, Pu Tian1,4
1School of Life Sciences, Jilin University, Changchun, China
2Zhongshan Ophthalmic Center, Sun Yat-Sen University, Zhongshan, China
3Ultrasound Department, China-Japan Union Hospital of Jilin University, Changchun, China
4Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, China

Tóm tắt

Sulfotransferase xuất hiện trong cytosol (SULTs) xúc tác quá trình chuyển nhóm sulfonate từ đồng yếu tố đặc biệt 3′-phosphoadenosine 5′-phosphosulfate (PAPS) sang một số lượng lớn các chất nền đa dạng. Trong nghiên cứu này, các đường hầm hỗ trợ vận chuyển chất nền trong enzyme đã được nghiên cứu, cả khi có và không có đồng yếu tố gắn kết, thông qua các mô phỏng động lực học phân tử sâu rộng. Các dư lượng cấu thành nên các đường hầm, cũng như các dư lượng tạo ra nút thắt cho các đường hầm, đã được xác định. Phân tích hình dạng của nắp vị trí hoạt động cũng được thực hiện. Chúng tôi nhận thấy rằng sự gắn kết của đồng yếu tố có thể làm hẹp đáng kể đường hầm do sự đóng lại của nắp vị trí hoạt động đối với enzyme. Vai trò của các dư lượng then chốt được xác định trong nghiên cứu này cần được khám phá thêm một cách thực nghiệm.

Từ khóa

#sulfotransferase #động lực học phân tử #chất nền #nghiệm thức #mô phỏng

Tài liệu tham khảo

Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, Pedersen LC (2001) Structure and function of sulfotransferases. Arch Biochem Biophys 390:149–157 Chapman E, Best MD, Hanson SR, Wong CH (2004) Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 43:3526–3548 Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, Loppnau P, Martin F, Thornton J, Edwards AM, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH (2007) Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol 5:e97 Falany CN (1997) Enzymology of human cytosolic sulfotransferases. FASEB J 11:206–216 Falany JL, Macrina N, Falany CN (2002) Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation. Breast Cancer Res Treat 74:167–176 Di L (2014) The role of drug metabolizing enzymes in clearance. Expert Opin Drug Metab Toxicol 10:379–393 Falany CN, Cook IT, Rohn KJ, Leyh TS (2011) Structural plasticity and substrate selectivity in human cytosolic sulfotransferases. Drug Metab Rev 43:27–27 Dong D, Ako R, Wu B (2012) Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity. Expert Opin Drug Metab Toxicol 8:635–646 Leyh TS, Cook I, Wang T (2013) Structure, dynamics and selectivity in the sulfotransferase family. Drug Metab Rev 45:423–430 Herbst U, Fuchs JI, Teubner W, Steinberg P (2006) Malignant transformation of human colon epithelial cells by benzo[c]phenanthrene dihydrodiolepoxides as well as 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Toxicol Appl Pharmacol 212:136–145 Riches Z, Stanley EL, Bloomer JC, Coughtrie MWH (2009) Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT "pie". Drug MetabDispos 37:2255–2261 Pedersen LC, Petrotchenko EV, Negishi M (2000) Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. FEBS Lett 475:61–64 Rehse PH, Zhou M, Lin SX (2002) Crystal structure of human dehydroepiandrosterone sulphotransferase in complex with substrate. Biochem J 364:165–171 Chang HJ, Shi R, Rehse P, Lin SX (2004) Identifying androsterone (ADT) as a cognate substrate for human dehydroepiandrosterone sulfotransferase (DHEA-ST) important for steroid homeostasis: structure of the enzyme-ADT complex. J Biol Chem 279:2689–2696 Cook I, Wang T, Falany CN, Leyh TS (2012) A nucleotide-gated molecular pore selects sulfotransferase substrates. Biochemistry 51:5674–5683 Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS (2013) The gate that governs sulfotransferase selectivity. Biochemistry 52:415–424 Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS (2013) Testing the sulfotransferase molecular pore hypothesis. J Biol Chem 288:8619–8626 Cook I, Wang T, Falany CN, Leyh TS (2013) High accuracy in silico sulfotransferase models. J Biol Chem 288:34494–34501 Cook IT, Wang T, Falany CN and Leyh T (2013) Active site gating controls substrate selectivity in cytosolic sulfotransferases. FASEB J 27 Wang T, Cook I, Falany CN, Leyh TS (2014) Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1. J Biol Chem 289:26474–26480 Li MH, Zheng WJ (2013) All-atom molecular dynamics simulations of actin-myosin interactions: a comparative study of cardiac α myosin, β myosin, and fast skeletal muscle myosin. Biochemistry 52:8393–8405 Brezovsky J, Chovancova E, Gora A, Pavelka A, Biedermannova L, Damborsky J (2013) Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol Adv 31:38–49 Fiser A, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491 Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802 MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616 P-p Z, Zhao L, S-y L, Tian P (2015) The effect of ligands on the thermal stability of sulfotransferases: a molecular dynamics simulation study. J Mol Mod 21:1–7 Zhao L, Zhang P, Long S, Wang L, Tian P (2015) The impact of ligands on the structure and flexibility of sulfotransferases: a molecular dynamics simulation study. J Mol Mod 21:1–9 Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28 Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J, Damborsky J (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. Plos Comput Biol 8(10): e1002708 Lu LY, Hsieh YC, Liu MY, Lin YH, Chen CJ, Yang YS (2008) Identification and characterization of two amino acids critical for the substrate inhibition of human dehydroepiandrosterone sulfotransferase (SULT2A1). Mol Pharmacol 73:660–668