Nghiên cứu ảnh hưởng của sự thay đổi chỉ số Miller của điện cực đến sự vận chuyển điện tử trong các mối nối phân tử dựa trên thiophen

Journal of Molecular Modeling - Tập 24 - Trang 1-8 - 2018
Rupendeep Kaur1, Sukhleen Bindra Narang1, Deep Kamal Kaur Randhawa2
1Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India
2Department of Electronics and Communication Engineering, Guru Nanak Dev University Regional Campus, Jalandhar, India

Tóm tắt

Việc vận chuyển điện tích qua các dây phân tử dựa trên thiophen-dithiol được gắn vào các điện cực vàng với ba loại hướng tinh thể khác nhau (<1,1,1>, <1,1,0> và <1,0,1>) đã được nghiên cứu. Sự vận chuyển electron trong các hệ thống được xem xét đã được đánh giá một cách có hệ thống bằng cách phân tích giá trị dòng điện, phổ truyền dẫn, mật độ trạng thái thiết bị dự kiến và phân tích quỹ đạo không thiên lệch sử dụng lý thuyết chức năng mật độ kết hợp với hàm Green không cân bằng. Các cuộc điều tra đã chứng minh rằng việc điều chỉnh độ dẫn trong các khớp phân tử nano là khả thi thông qua các hướng điện cực khác nhau. Do khoảng cách HOMO–LUMO trong khớp thiophen dithiol có hướng <1,1,0> thấp hơn đáng kể so với các cấu hình khác đang được xem xét, cấu hình <1,1,0> thể hiện độ dẫn xây dựng vượt trội so với các hướng khớp khác. Điều này đã cung cấp cho chúng tôi ý tưởng để thiết kế các thiết bị điện tử nano quy mô nhỏ có cấu trúc dị vòng tiên phong. Ngoài ra, <1,1,0> đã được phát hiện có hành vi độ dẫn vi phân âm trên +2,6 V và dưới −2,6 V, do đó có tiềm năng ứng dụng trong các mạch dao động và công tắc.

Từ khóa

#thiophen #độ dẫn #khớp phân tử #điện cực vàng #lý thuyết chức năng mật độ #hàm Green không cân bằng

Tài liệu tham khảo

Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254 Li Y, Yao J, Liu C, Yang C (2008) Theoretical investigation on electron transport properties of a single molecular diode. J Mol Struct (THEOCHEM) 867:59–63 Qiu M, Liew KM (2011) Deformation effects of multi-functional monatomic carbon ring device. Phys Lett A 375:2234–2238 Zhao P, Wang PJ, Zhang Z, Liu DS (2010) Electronic transport properties of a molecular switch with carbon nanotube electrodes: a first-principles study. Physica B 405:446–450 Zhao P, Wang PJ, Zhang Z, Ren MJ, Liu DS (2010) First-principles study of the electronic transport properties of the carbon nanobuds. Physica B 405:2097–2101 Zhao P, Zhang Z, Wang PJ, Liu DS (2009) 1,3-diphenyltriazene as a possible optical molecular switch: a first-principles study. Physica B 404:3462–3465 Zhao P, Wang PJ, Zhang Z, Liu DS (2010) Negative differential resistance in a carbon nanotube-based molecular junction. Phys Lett A 374:1167–1171 Bauschlicher Jr CW, Lawson JW (2008) Current–voltage curves for molecular junctions: the issue of the basis set for the metal contacts. Theor Chem Account 119:429–435 An YP, Yang CL, Wang MS, Ma XG, Wang DH (2010) First-principles study of transport properties of endohedral li@C20 metallofullerene. Curr Appl Phys 10:260–265 Zahedi E, Pangh A (2011) The comparative study in transport properties of furan, thiophene and selenophene dithiols in nano electronic. Superlattices Microstruct 50:386–399 Tian W, Datta S, Hong S, Reifenberger RG, Henderson JI, Kubiak CP (1998) Resistance of molecular nanostructures. Phys E 1:304–309 Johansson A, Stafström S (2000) Interactions between molecular wires and a gold surface. Chem Phys Lett 322:301–306 Jalili S, Rafii-Tabar H (2005) Electronic conductance through organic nanowires. Phys Rev B 71:165410 Jalili S, Moradi F (2005) Charge transport through thiophene bithiol molecule as a molecular wire. J Theor Comp Chem 4:1001 Kergueris C, Bourgoin JP, Palacin S (1999) Experimental investigations of the electrical transport properties of dodecanethiol and αω bisthiolterthiophene molecules embedded in metal-molecule-metal junctions. Nanotechnology 10:8 Jalili S, Pangh AH (2009) The effect of metal-molecule nano-contacts with different end groups in molecular electronics. Int J M Phys B 23:5657–5669 Jalili S, Pangh AH (2010) The effect of metal-molecule contacts on transport properties of molecules J. Comput Theor Nanosci 7:1559–1569 Wang L-h, Zhang Z-z, Lv C-q, Ding B-j, Guo Y (2013) Large negative differential resistance and rectifying performance modulated by contact sites in fused thiophene trimmer-based molecular devices. Phys Lett A 377:1920–1924 Petrov VA, Dooley R, Marchione AA, Marshall W (2016) Reaction of hexafluorothioacetone dimer with indoles, pyrroles, furans and thiophenes. J Fluor Chem 182:12–21 Pasini M, Destri S, Botta C, Porzio W (1999) Synthesis, optical and electrochemical characterization of lnter-ring bridged tetramers based on thiophene. Tetrahedron 55:14985–14994 Zahedi E (2012) DFT-NEGF study of transport properties and NDR behavior in fused furan and thiophene dimmers. Physica B 407:4503–4511 Sen A, Kaun CC (2010) Effect of electrode orientations on charge transport in. Alkanedithiol single-molecule junctions. ACS Nano 4(11):6404–6408 Kaun CC, Guo H, Grütter P, Lennox RB (2004) Momentum filtering effect in molecular wires. Phys Rev B 70:195309 Luzhbin DA, Kaun CC (2010) Origin of high- and low-conductance traces in alkanediisothiocyanate single-molecule contacts. Phys Rev B 81:035424 Kaur RP, Sawhney RS, Engles D (2016) Effect of gold electrode crystallographic orientations on charge transport through aromatic molecular junctions. J Mol Phys 114:2289–2298. https://doi.org/10.1080/00268976.2016.1197431 Lang ND (1995) Resistance of atomic wires. Phys Rev B 52:5335 Xue Y (2002) First-principles based matrix Green's function approach to molecular electronic devices: general formalism. Chem Phys 281:151–170 Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for non-equilibrium electron transport. Phys Rev B 65:165401 Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407 Magoga M, Joachim C (1997) Conductance and transparence of long molecular wires. Phys Rev B 56:4722 Corbel S, Cerda J, Sautet P (1999) Ab initio calculations of scanning tunneling microscopy images within a scattering formalism. Phys Rev B 60:1989 Cerdá J, Soria F (2000) Accurate and transferable extended Hückel-type tight-binding parameters. Phys Rev B 61:7965 Emberly EG, Kirczenow G (2001) Multiterminal molecular wire systems: a self-consistent theory and computer simulations of charging and transport. Phys Rev B 62:10451 Zahid F, Paulsson M, Polizzi E, Ghosh AW, Siddiqui L, Datta S (2005) A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics. J Chem Phys 123:064707 Kienle D, Cerda JI, Ghosh AW (2006) Extended Hückel theory for band structure, chemistry, and transport. I. Carbon nanotubes. J Appl Phys 100:043714 Kienle D, Bevan KH, Liang GC, Siddiqui L, Cerda JI, Ghosh AW (2006) Extended Hückel theory for band structure, chemistry, and transport. II. Silicon. J Appl Phys 100:043715 Fronzi M, Soon AS, Delley B, Traversa E, Stampfly C (2009) Stability and morphology of cerium oxide surfaces in an oxidizing environment: a first principles investigation. J Chem Phys 131:104701 Fronzi M, Piccinin S, Delley B, Traversa E, Stampfly C (2009) Water adsorption on the stoichemetric and reduced CeO2(111) surface: a first principles investigation. Phys Chem Phys 11:9188 Singh G, Kaur M, Mahajan S, Sawhney RS (2016) To inquire the effects of doping on current characteristics of fullerene molecular junction device. Mater Today Proc 3:2422 Starikov E, Lewis JP, Tanaka S (eds) (2011) Modern methods for theoretical physical chemistry of biopolymers. Elsevier, Amsterdam Kaur RP, Sawhney RS, Engles D (2017) First principle transport modelling of be-doped organic molecular junctions. J Mol Graph Model 75:199–208. https://doi.org/10.1016/j.jmgm.2017.05.020 Jalili S, Pangh AH (2009) The effect of metal-molecule nano-contacts with different end groups in molecular electronics. Int J M Phys B 23:5657 Lawson JW, Bauschlicher Jr CW (2006) Transport in molecular junctions with different metallic contacts. Phys Rev B 74:125401 Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge Lang ND, Kohn W (1971) Theory of metal surfaces: work function. Phys Rev B 3:1215 Kaur RP, Sawhney RS, Engles D (2014) Augmenting molecular junctions with different transition metal contacts. J Multiscale Model 5(2):1350009 Galperin M, Nitzan A, Ratner MA (2007) Inelastic effects in molecular junctions in the coulomb and Kondo regimes: non-equilibrium equation of motion approach. Phys Rev B 76:035301 Toyoda K, Morimoto K, Morita K (2006) First-principles study on current through a single π conjugate molecule for analysis of carrier injection through an organic/metal interface. Surf Sci 600:5080