Nghiên cứu tác động của đặc điểm hydrogel đến khả năng tự phục hồi của vật liệu xi măng

Matériaux et constructions - Tập 56 - Trang 1-18 - 2023
Babak Vafaei1, Ali Ghahremaninezhad1
1Department of Civil and Architectural Engineering, University of Miami, Coral Gables, USA

Tóm tắt

Mặc dù đã có nhiều nghiên cứu về khả năng tự phục hồi của các vật liệu xi măng chứa hydrogel, nhưng mối liên hệ giữa khả năng tự phục hồi và các đặc tính của hydrogel vẫn chưa được khám phá đầy đủ và còn nhiều điều chưa hiểu rõ. Do đó, tính mới của bài báo này là khảo sát khả năng tự phục hồi của các vật liệu xi măng chứa nhiều loại hydrogel với các hành vi khác nhau. Phân tích nhiệt trọng lượng, phổ hồng ngoại biến đổi Fourier và kính hiển vi điện tử quét trang bị phổ huỳnh quang tia X phát xạ năng lượng đã được sử dụng để nghiên cứu các đặc điểm hóa học của sản phẩm phục hồi. Thử nghiệm uốn ba điểm và kính hiển vi quang học đã được sử dụng để đánh giá khả năng phục hồi sức mạnh cơ học và việc lấp đầy vết nứt tương ứng trong các vật liệu xi măng chứa hydrogel. Các sản phẩm phục hồi được chứng minh bao gồm canxi-silicate-hydrate (C–S–H), ettringite, canxi hydroxit và canxi carbonate. Bột mới được điều chỉnh hydrogel với khả năng hút nước cao nhất cho thấy hàm lượng canxi carbonate cao nhất. Tất cả các bột mới được điều chỉnh hydrogel đều thể hiện sự cải thiện trong khả năng phục hồi sức mạnh và việc lấp đầy vết nứt so với bột điều khiển, và sự cải thiện này rõ rệt hơn ở bột có khả năng hút nước cao nhất.

Từ khóa

#hydrogel #khả năng tự phục hồi #vật liệu xi măng #sức mạnh cơ học #hóa học phục hồi

Tài liệu tham khảo

Mignon A, Snoeck D, Schaubroeck D, Luickx N, Dubruel P, van Vlierberghe S, de Belie N (2015) pH-responsive superabsorbent polymers: a pathway to self-healing of mortar. React Funct Polym 93:68–76. https://doi.org/10.1016/j.reactfunctpolym.2015.06.003 Xu J, Yao W (2014) Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cem Concr Res 64:1–10. https://doi.org/10.1016/j.cemconres.2014.06.003 Wang K, Jansen DC, Shah SP, Karr AF (1997) Permeability study of cracked concrete. Cem Concr Res 27:381–393 Pacheco-Torgal F, Abdollahnejad Z, Miraldo S, Baklouti S, Ding Y (2012) An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr Build Mater 36:1053–1058. https://doi.org/10.1016/j.conbuildmat.2012.07.003 Edvardsen C (1999) Water permeability and autogenous healing of cracks in concrete. In: Innovation in concrete structures: design and construction. Thomas Telford Publishing, pp 473–487 Schröfl C, Erk KA, Siriwatwechakul W, Wyrzykowski M, Snoeck D (2022) Recent progress in superabsorbent polymers for concrete. Cem Concr Res 151:106648. https://doi.org/10.1016/j.cemconres.2021.106648 Wu M, Johannesson B, Geiker M (2012) A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater 28:571–583. https://doi.org/10.1016/j.conbuildmat.2011.08.086 Homma D, Mihashi H, Nishiwaki T (2009) Self-healing capability of fibre reinforced cementitious composites. J Adv Concr Technol 7:217–228 Li M, Li VC (2011) Cracking and healing of engineered cementitious composites under chloride environment. ACI Mater J 108:333 Neville A (2002) Autogenous healing: a concrete miracle? Concr Int 24:76–82 ter Heide N, Schlangen E (2007) Self-healing of early age cracks in concrete. In: First international conference on self healing materials, pp 1–12 van Tittelboom K, Wang J, Araújo M, Snoeck D, Gruyaert E, Debbaut B, Derluyn H, Cnudde V, Tsangouri E, van Hemelrijck D, de Belie N (2016) Comparison of different approaches for self-healing concrete in a large-scale lab test. Constr Build Mater 107:125–137. https://doi.org/10.1016/j.conbuildmat.2015.12.186 van Tittelboom K, de Belie N (2013) Self-healing in cementitious materials-a review. Materials. https://doi.org/10.3390/ma6062182 Snoeck D, de Belie N (2016) Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J Mater Civ Eng 25:864–870. https://doi.org/10.1061/(ASCE)MT.1943-5533 Lefever G, Snoeck D, Aggelis DG, de Belie N, van Vlierberghe S, van Hemelrijck D (2020) Evaluation of the self-healing ability of mortar mixtures containing superabsorbent polymers and nanosilica. Materials. https://doi.org/10.3390/ma13020380 Schröfl C, Erk KA, Siriwatwechakul W, Wyrzykowski M, Snoeck D (2022) Recent progress in superabsorbent polymers for concrete. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2021.106648 Hong G, Song C, Choi S (2020) Autogenous healing of early-age cracks in cementitious materials by superabsorbent polymers. Materials. https://doi.org/10.3390/ma13030690 Snoeck D, de Schryver T, de Belie N (2018) Enhanced impact energy absorption in self-healing strain-hardening cementitious materials with superabsorbent polymers. Constr Build Mater 191:13–22. https://doi.org/10.1016/j.conbuildmat.2018.10.015 Farzanian K, Vafaei B, Ghahremaninezhad A (2021) The influence of the chemical composition of hydrogels on their behavior in cementitious materials. Mater Struct. https://doi.org/10.1617/s11527-021-01838-z Fořt J, Migas P, Černý R (2020) Effect of absorptivity of superabsorbent polymers on design of cement mortars. Materials 13:1–16. https://doi.org/10.3390/ma13235503 Kalinowski M, Woyciechowski P (2021) Chloride diffusion in concrete modified with polyacrylic superabsorbent polymer (Sap) hydrogel—the influence of the water-to-cement ratio and sap-entrained water. Materials. https://doi.org/10.3390/ma14154064 Vafaei B, Farzanian K, Ghahremaninezhad A (2021) Effect of hydrogels containing nanosilica on the properties of cement pastes. J Compos Sci 5:105 Montanari L, Suraneni P, Weiss WJ (2017) Accounting for water stored in superabsorbent polymers in increasing the degree of hydration and reducing the shrinkage of internally cured cementitious mixtures. Adv Civ Eng Mater 6:583–599 Farzanian K, Vafaei B, Ghahremaninezhad A (2019) The behavior of superabsorbent polymers (SAPs) in cement mixtures with glass powders as supplementary cementitious materials. Materials. https://doi.org/10.3390/ma12213597 Farzanian K, Ghahremaninezhad A (2018) On the interaction between superabsorbent hydrogels and blended mixtures with supplementary cementitious materials. Adv Civ Eng Mater 7:567–589 Bazhuni MF, Kamali M, Ghahremaninezhad A (2019) An investigation into the properties of ternary and binary cement pastes containing glass powder. Front Struct Civ Eng 13:741–750 Vafaei B, Farzanian K, Ghahremaninezhad A (2020) The influence of superabsorbent polymer on the properties of alkali-activated slag pastes. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117525 Jiang D, Li X, Lv Y, Li C, Jiang W, Liu Z, Xu J, Zhou Y, Dan J (2021) Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cem Concr Res 149:106581. https://doi.org/10.1016/j.cemconres.2021.106581 Yang J, Snoeck D, de Belie N, Sun Z (2021) Effect of superabsorbent polymers and expansive additives on the shrinkage of alkali-activated slag. Cem Concr Compos 123:104218. https://doi.org/10.1016/j.cemconcomp.2021.104218 Wang P, Chen H, Chen P, Pan J, Xu Y, Wang H, Shen W, Cao K (2020) Effect of internal curing by super absorbent polymer on the autogenous shrinkage of alkali-activated slag mortars. Materials 13:1–13. https://doi.org/10.3390/ma13194318 Prabahar J, Vafaei B, Ghahremaninezhad A (2022) The effect of hydrogels with different chemical compositions on the behavior of alkali-activated slag pastes. Gels 8:731. https://doi.org/10.3390/gels8110731 Snoeck D, De Belie N (2019) Autogenous healing in strain-hardening cementitious materials with and without superabsorbent polymers: an 8-year study. Front Mater. https://doi.org/10.3389/fmats.2019.00048 Snoeck D (2022) Autogenous healing in 10-years aged cementitious composites using microfibers and superabsorbent polymers. Infrastructures (Basel). https://doi.org/10.3390/infrastructures7100129 Mignon A, Vermeulen J, Snoeck D, Dubruel P, van Vlierberghe S, de Belie N (2017) Mechanical and self-healing properties of cementitious materials with pH-responsive semi-synthetic superabsorbent polymers. Mater Struct Mater Constr. https://doi.org/10.1617/s11527-017-1109-4 Lefever G, van Hemelrijck D, Aggelis DG, Snoeck D (2022) Evaluation of self-healing in cementitious materials with superabsorbent polymers through ultrasonic mapping. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.128272 Snoeck D, Dewanckele J, Cnudde V, de Belie N (2016) X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem Concr Compos 65:83–93. https://doi.org/10.1016/j.cemconcomp.2015.10.016 Snoeck D, Pel L, De Belie N (2020) Autogenous healing in cementitious materials with superabsorbent polymers quantified by means of NMR. Sci Rep. https://doi.org/10.1038/s41598-020-57555-0 Gruyaert E, Debbaut B, Snoeck D, Díaz P, Arizo A, Tziviloglou E, Schlangen E, De Belie N (2016) Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests. Smart Mater Struct. https://doi.org/10.1088/0964-1726/25/8/084007 Wang JY, Soens H, Verstraete W, de Belie N (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152. https://doi.org/10.1016/j.cemconres.2013.11.009 Baffoe E, Ghahremaninezhad A (2022) On the interaction between proteins and cracked cementitious surface. Constr Build Mater 352:128982. https://doi.org/10.1016/j.conbuildmat.2022.128982 Baffoe E, Ghahremaninezhad A (2022) The effect of biomolecules on enzyme-induced calcium carbonate precipitation in cementitious materials. Constr Build Mater 345:128323. https://doi.org/10.1016/j.conbuildmat.2022.128323 Snoeck D, van Tittelboom K, Steuperaert S, Dubruel P, de Belie N (2014) Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct 25:13–24. https://doi.org/10.1177/1045389X12438623 Chindasiriphan P, Yokota H, Pimpakan P (2020) Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Constr Build Mater 233:116975. https://doi.org/10.1016/j.conbuildmat.2019.116975 Lefever G, Aggelis DG, de Belie N, Raes M, Hauffman T, van Hemelrijck D, Snoeck D (2020) The influence of superabsorbent polymers and nanosilica on the hydration process and microstructure of cementitious mixtures. Materials 13:1–16. https://doi.org/10.3390/ma13225194 Krafcik MJ, Erk KA (2016) Characterization of superabsorbent poly (sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater Struct 49:4765–4778. https://doi.org/10.1617/s11527-016-0823-7 Krafcik MJ, Bose B, Erk KA (2018) Synthesis and characterization of polymer-silica composite hydrogel particles and influence of hydrogel composition on cement paste microstructure. Adv Civ Eng Mater 7:590–613. https://doi.org/10.1520/ACEM20170144 Zhu Q, Barney CW, Erk KA (2015) Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater Struct 48:2261–2276. https://doi.org/10.1617/s11527-014-0308-5 Krafcik MJ, Macke ND, Erk KA (2017) Improved concrete materials with hydrogel-based internal curing agents. Gels 3:46. https://doi.org/10.3390/gels3040046 Farzanian K, Ghahremaninezhad A (2018) Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials. Mater Struct Mater Constr. https://doi.org/10.1617/s11527-017-1128-1 Farzanian K, Ghahremaninezhad A (2018) On the effect of chemical composition on the desorption of superabsorbent hydrogels in contact with a porous cementitious material. Gels 4:70. https://doi.org/10.1617/s11527-017-1068-9 Snoeck D, Steuperaert S, van Tittelboom K, Dubruel P, de Belie N (2012) Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem Concr Res 42:1113–1121 Snoeck D (2016) Self-healing and microstructure of cementitious materials with microfibres and superabsorbent polymers. http://studwww.ugent.be/~dsnoeck/PhD/PhDDidierSnoeck.pdf Snoeck D, van den Heede P, van Mullem T, de Belie N (2018) Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography. Cem Concr Res 113:86–98. https://doi.org/10.1016/j.cemconres.2018.07.002 Prabahar J, Vafaei B, Baffoe E, Ghahremaninezhad A (2022) The effect of biochar on the properties of alkali-activated slag pastes. Constr Mater 2:1–14 Snoeck D, Schröfl C, Mechtcherine V (2018) Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (SAP) prior to implementation in cement-based materials. Mater Struct Mater Constr. https://doi.org/10.1617/s11527-018-1242-8 Huang H, Ye G, Damidot D (2013) Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem Concr Res 52:71–81. https://doi.org/10.1016/j.cemconres.2013.05.003 Mignon A, Graulus GJ, Snoeck D, Martins J, de Belie N, Dubruel P, van Vlierberghe S (2014) pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. J Mater Sci 50:970–979. https://doi.org/10.1007/s10853-014-8657-6 Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42:865–873. https://doi.org/10.1016/j.cemconres.2012.03.011 Boshoff W, Mechtcherine V, Snoeck D, Schröfl C, De Belie N, Ribeiro AB, Cusson D, Wyrzykowski M, Toropovs N, Lura P (2020) The effect of superabsorbent polymers on the mitigation of plastic shrinkage cracking of conventional concrete, results of an inter-laboratory test by RILEM TC 260-RSC. Mater Struct Mater Constr. https://doi.org/10.1617/s11527-020-01516-6 Kim YY, Lee KM, Bang JW, Kwon SJ (2014) Effect of W/C ratio on durability and porosity in cement mortar with constant cement amount. Adv Mater Sci Eng. https://doi.org/10.1155/2014/273460 Lothenbach B, Le Saout G, Ben Haha M, Figi R, Wieland E (2012) Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cem Concr Res 42:410–423 Esteves LP (2011) On the hydration of water-entrained cement-silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta 518:27–35. https://doi.org/10.1016/J.TCA.2011.02.003 Hall C, Barnes P, Billimore AD, Jupe AC, Turrillas X (1996) Thermal decomposition of ettringite Ca6[Al(OH)6]2(SO4)3·26H2O. J Chem Soc Faraday Trans 92:2125–2129. https://doi.org/10.1039/FT9969202125 Snoeck D, Jensen OM, de Belie N (2015) The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cem Concr Res 74:59–67. https://doi.org/10.1016/j.cemconres.2015.03.020 Kamali M, Ghahremaninezhad A (2017) An investigation into the influence of superabsorbent polymers on the properties of glass powder modified cement pastes. Constr Build Mater 149:236–247. https://doi.org/10.1016/j.conbuildmat.2017.04.125 Esteves LP (2011) On the hydration of water-entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta 518:27–35 Ye G, Liu X, de Schutter G, Poppe A-M, Taerwe L (2007) Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cem Concr Compos 29:94–102 Pane I, Hansen W (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res 35:1155–1164 Tobón JI, Payá JJ, Borrachero M, Restrepo OJ (2012) Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Constr Build Mater 36:736–742 Senff L, Labrincha JA, Ferreira VM, Hotza D, Repette WL (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr Build Mater 23:2487–2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005 Wu L, Zhang Z, Yang M, Yuan J, Li P, Men X (2020) Graphene enhanced and in situ-formed alginate hydrogels for reducing friction and wear of polymers. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2020.124434 Ashraf M, Khan AN, Ali Q, Mirza J, Goyal A, Anwar AM (2009) Physico-chemical, morphological and thermal analysis for the combined pozzolanic activities of minerals additives. Constr Build Mater 23:2207–2213 Thongsanitgarn P, Wongkeo W, Chaipanich A (2014) Hydration and compressive strength of blended cement containing fly ash and limestone as cement replacement. J Mater Civ Eng 26:2–6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001002 Mitchell L, Margeson J (2006) The effects of solvents on C-S–H as determined by thermal analysis. J Therm Anal Calorim 86:591–594 Dent Glasser LS, Lachowski EE, Mohan K, Taylor HFW (1978) A multi-method study of C3S hydration. Pergamon Press, Oxford Taylor HFW (1997) Cement chemistry. Thomas Telford, London Mills R, Lobo VMM (1989) Self-diffusion in electrolyte solutions. Physical sciences data, vol 36. Elsevier, Amsterdam Wu L, Farzadnia N, Shi C, Zhang Z, Wang H (2017) Autogenous shrinkage of high performance concrete: a review. Constr Build Mater 149:62–75. https://doi.org/10.1016/j.conbuildmat.2017.05.064 Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X (1999) Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc 82:742–748 Yılmaz B, Olgun A (2008) Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. Cem Concr Compos 30:194–201 Kamali M, Ghahremaninezhad A (2018) Effect of biomolecules on the nanostructure and nanomechanical property of calcium-silicate-hydrate. Sci Rep 8:1–16. https://doi.org/10.1038/s41598-018-27746-x Kamali M, Ghahremaninezhad A (2018) A study of calcium-silicate-hydrate/polymer nanocomposites fabricated using the layer-by-layer method. Materials 11:527. https://doi.org/10.3390/ma11040527 Vladu CM, Hall C, Maitland GC (2006) Flow properties of freshly prepared ettringite suspensions in water at 25 °C. J Colloid Interface Sci 294:466–472 Mondal P, Shah S, Marks L (2008) Nanoscale characterization of cementitious materials. ACI Mater J 105:174–179 Dijkstra H (1998) EDXA operater’s school course manual Glasser LSD, Lachowski EE, Mohan K, Taylor HFW (1978) A multi-method study of C3S hydration. Cem Concr Res 8:733–739 Yang E-H (2008) Designing added functions in engineered cementitious composites Yang Y, Lepech MD, Yang E-H, Li VC (2009) Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem Concr Res 39:382–390 Snoeck D (2015) Self-healing and microstructure of cementitious materials with microfibres and superabsorbent polymers