Investigating the competitive assumption of Multinomial Logit models of brand choice by nonparametric modeling
Tóm tắt
The Multinomial Logit (MNL) model is still the only viable option to study nonlinear responsiveness of utility to covariates nonparametrically. This research investigates whether MNL structure of inter-brand competition is a reasonable assumption, so that when the utility function is estimated nonparametrically, the IIA assumption does not bias the result. For this purpose, the authors compare the performance of two comparable nonparametric choice models that differ in one aspect: one assumes MNL competitive structure and the other infers the pattern of brands’ competition nonparametrically from data.
Tài liệu tham khảo
Abe, M. (1995), ‘A nonparametric density estimation method for brand choice using scanner data’,Marketing Science 14(3), 300–325.
Abe, M. (1998), ‘Measuring consumer, nonlinear brand choice response to price’,Journal of Retailing 74(4), 541–568.
Abe, M. (1999), ‘A generalized additive model for discrete-choice data’,Journal of Business & Economic Statistics 17(3), 271–284.
Ben-Akiva, M. and Lerman, S. (1985),Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge, MA.
Boztuğ, Y. and Hildebrandt, L. (2001), ‘Nichtparametrische Methoden zur Schätzung von Responsefunktionen’,in H. Hippner, U. Küsters, M. Meyer and K. Wilde, eds, ‘Handbuch Data Mining im Marketing’, Vieweg, pp. 241–251.
Briesch, R. A., Chintagunta, P. K. and Matzkin, R. L. (1997), Nonparametric and semiparametric models of brand choice behavior, Technical report, University of Texas at Austin.
Gonul, F. and Srinivasan, K. (1993), ‘Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues’,Marketing Science,12(3), 213–229.
Guadagni, P. M. and Little, J. D. C. (1983), ‘A logit model of brand choice calibrated on scanner data’,Marketing Science 2(3), 203–238.
Härdie, W., Klinke, S. and Müller, M. (2000),XploRe Learning Guide, Springer-Verlag, Berlin.
Hastie, T. J. and Tibshirani, R. J. (1986), ‘Generalized additive models’,Statistical Science 1(3), 297–318.
Hastie, T. J. and Tibshirani, R. J. (1987), ‘Generalized additive models: Some applications’,Journal of the American Statistical Association 82(398), 371–386.
Hastie, T. J. and Tibshirani, R. J. (1990),Generalized Additive Models, Chapman & Hall, London.
Hausman, J. and McFadden, D. (1984), ‘A Specification Test for the Multinomial Logit Model’,Econometrica 52, 1219–1240.
Hruschka, H., Probst, M. and Fettes, W. (2001), Homogeneous and Latent Class Versions of the Neural Net-Multinomial Logit Model (NN-MNL): A Semiparametric Approach to Analyze Brand Choice, Discussion Paper 363, Faculty of Economics, University of Regensburg.
Kamakura, W. A. and Russell, G. J. (1989), ‘A Probabilistic Choice Model for Market Segmentation and Elasticity Structure’,Journal of Marketing Research,26(4), 379–390.
Manski, C. F. and McFadden, D. (1981), Alternative estimators and sample designs for discrete choice analysis,in C. F. Manski and D. McFadden, eds, ‘Structural Analysis of Discrete Data with Econometric Applications’, The MIT Press, pp. 2–50.
McCulloch, R. E. and Rossi, P. E. (1994), ‘An Exact Likelihood Analysis of the Multinomial Probit Model’,Journal of Econometrics,64, 207–240.
McFadden, D. (1974), ‘Conditional Logit Analysis of Qualitative Choice Behavior’,in P. Zarembka, ed, ‘Frontiers in Econometrics’, Academic Press, pp. 105–142.
McFadden, D. (1978), ‘Modelling the Choice of Residential Location’,in A. Karlquist et al., eds, ‘Spatial Interaction Theory and Residential Location’, The MIT Press, pp. 198–272.
McFadden, D. (1981), ‘Econometric Models of Probabilistic Choice’,in ‘Structural Analysis of Discrete Data with Econometric Applications’, C. F. Manski and D. McFadden, eds, ‘Structural Analysis of Discrete Data with Econometric Applications’, The MIT Press, pp. 75–96.
McFadden, D. (1989), ‘A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration’,Econometrica,57, 995–1026.
Nelder, J. A. and Wedderburn, R. W. M. (1972), ‘Generalized linear models’,Journal of the Royal Statistical Society, Series A 135(3), 370–384.
Nielsen, J. P. and Linton, O. B. (1998), ‘An optimization interpretation of integration and back-fitting estimators for separable nonparametric models’,Journal of the Royal Statistical Society, Series B 60(1), 217–222.
Rossi, P. E. and Allenby, G. (1993), ‘A Bayesian Approach to Estimating Household Parameters’,Journal of Marketing Research,30 (2), 171–82.
Rossi, P. E., McCulloch, R. E. and Allenby, G. (1996), ‘The Value of Purchase History Data in Target Marketing’,Marketing Science,15 (4), 321–40.
Silverman, B. W. (1986),Density Estimation for Statistics and Data Analysis, Chapman & Hall, London.
Venables, W. and Ripley, B. D. (1994),Modern Applied Statistics with S-Plus, Springer.
West, P. M., Brockett, P. L. and Golden, L. L. (1997), ‘A comparative analysis of neural networks and statistical methods for predicting consumer choice’,Marketing Science 16(4), 370–391.