Nghiên cứu các dấu hiệu cảnh báo sớm sự phát triển của rãnh ở Đông Nam Nigeria bằng cách sử dụng các mô hình dự đoán tiềm năng xói mòn

Springer Science and Business Media LLC - Tập 37 - Trang 4783-4803 - 2023
Chinero Nneka Ayogu1, Raphael Iweanya Maduka2,3, Nnadozie Onyekachi Ayogu2
1Geomorphology Unit, Department of Geography, University of Nigeria, Nsukka, Nigeria
2Geotechnical and Environmental Unit, Department of Geology, University of Nigeria, Nsukka, Nigeria
3Department of Geography, University of Nigeria, Nsukka, Nigeria

Tóm tắt

Sự can thiệp, quản lý và kiểm soát kịp thời hiện tượng xói mòn và trượt đất ở Đông Nam Nigeria yêu cầu phải điều tra các dấu hiệu cảnh báo sớm của sự phát triển rãnh bằng cách sử dụng các mô hình dự đoán tiềm năng xói mòn. Các phương pháp lập bản đồ thực địa, mô hình địa hình, địa mạo, geo-thống kê và độ ổn định sườn đã được áp dụng. Các tham số địa kỹ thuật và độ dốc đã được kiểm tra trong khi phân tích thành phần chính (PCA) và mạng nơ-ron nhân tạo (ANN) đã được sử dụng để xác định các yếu tố cơ bản của sự phát triển rãnh. Phân loại xói mòn rãnh và phân tích độ ổn định của sườn đã được thực hiện bằng cách sử dụng chỉ số dự đoán tách biệt - lỏng hóa (DLPI) và phương pháp cân bằng tổng thể của Morgenstern và Price (GLE) tương ứng. Các phép đo địa hình trong khu vực nghiên cứu dao động từ 6 đến 591 m. Dữ liệu từ phòng thí nghiệm cho thấy rằng các thuộc tính địa kỹ thuật của đất dao động từ cát (65–95%), bùn/đất sét (4–30%), LL (4–38%), PI (0–16%), ϕ (25–40°), c (0–12 kPa), MDD (1.61–2.12 g/cm3) và OMC (10.50–20.98%). Các đặc điểm thủy văn dao động từ n (30–70%), k (1.97 × 10–7–4.02 × 10–4), S (30–97%) và NMC (2.50–16.87%). Các giá trị này kết hợp với các mô hình địa mạo đã giải thích rằng các rãnh chủ yếu hình thành trên những vùng đất cao mịn, xốp và bão hòa. Phân tích yếu tố tiết lộ rằng có các giá trị PCA cao cho các thuộc tính địa-mechanical và thủy địa—cát (0.840), bùn/đất sét (− 0.826), LL (0.710), PI (− 0.672), c (− 0.795) và ϕ (− 0.738), k (0.842), S (0.822) và n (0.773). Các thuộc tính của đất có giá trị âm (−) là các yếu tố làm tăng độ ổn định của đất chống lại xói mòn, điều này thật không may là thiếu hoặc hiện diện với số lượng rất nhỏ trong các loại đất dễ bị xói mòn. Điều này gợi ý rằng các giá trị thấp của các thuộc tính địa- cơ (nội dung chất mịn, PI, c, và ϕ) và các chỉ tiêu thủy địa cao (k, S và n) là những dấu hiệu sớm đối với các loại đất dễ bị xói mòn. Tỷ lệ SGR và SFR của các loại đất nói chung nhỏ hơn 1, với giá trị dao động giữa 0.00 và 0.086 và 0.042–0.462 tương ứng, nghĩa là khả năng tách biệt và lỏng hóa cao và có sự liên kết mạnh với các lực xói mòn. Các giá trị từ DLPI dao động từ 83.86 đến 204.48, cho thấy tiềm năng xói mòn từ thấp đến đáng kể. Mô hình ANN hiển thị một hệ số xác định (R2) trị giá 0.966, cho thấy độ chính xác cao trong mô hình DLPI, đồng thời trình bày nội dung cát, n, S và PI là một trong năm tham số đất ảnh hưởng nhất gây ra xói mòn trong khu vực nghiên cứu. Các mô hình độ ổn định sườn xác nhận rằng yếu tố an toàn (FOS) của rãnh đối với sự thất bại của sườn dao động từ 1 > FOS ≤ 1.2, cho thấy tình trạng không ổn định đến dễ bị mất ổn định.

Từ khóa


Tài liệu tham khảo

Abdulfatai IA, Okunlola AI, Akande WG, Momoh LO, Ibrahim KO (2014) Review of gully erosion in Nigeria: causes, impacts and possible solutions. J Geosci Geomat 2(3):125–129 Adekalu KO, Olorunfemi IA, Osunbitan JA (2007) Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresour Technol 98(4):912–917 Akpokodje EG, Olurunfemi BN, Etu-Efeotor JO (1986) Geotechnical properties of soils susceptible to erosion in south eastern Nigeria. Nigeria J Appl Sci 4(3):161–163 Akpokodje EG, Tse AC, Ekeocha N (2010) Gully erosion geohazards in southeastern Nigeria and management implications. Sci Afr 9(1):20–36 Arua I, Rao VR (1987) New stratigraphic data on the Eocene Ameki Formation, southeastern Nigeria. J Afri Earth Sci 6(4):391–397 Ayogu CN, Maduka RI, Ayogu NO, Monona OV (2019) An evaluation of potential toxic metals in sediments of a tropical watershed in southern Benue Trough, Nigeria. Environ Earth Sci 78(15):1–21. https://doi.org/10.1007/s12665-019-8445-3 Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Global assessment of land degradation and improvement, identification by remote sensing. ISRIC, Wageningen, pp 26–36 Blong RJ (1970) The development of discontinuous gullies in a pumice catchment. Am J Sci 268(4):369–383 Carey B (2006) Gully erosion. Queensland Government Natural Resources and Water Facts Land Series L81, 4p Casali J, Gimenez R, Bennett S (2009) Gully erosion processes and modelling. In: Proceedings of the fourth international symposium on gully erosion, Pamplona, Spain, September 2007, Earth Surface Processes and Landforms, vol 34. pp 1839–1984 Chiemelu N, Okeke F, Nwosu K, Ibe C, Ndukwu R, Ugwuoti A (2013) The role of surveying and mapping in erosion management and control: case of Omagba erosion site, Onitsha Anambra state, Nigeria. J Environ Earth Sci 3(11):11–18 Chinweze C (2017) Erosion and climate change challenges: Anambra state, Nigeria case study. In: Contribution in addressing climate change; International Association for Impact Assessment: Montreal, QC, Canada. pp 1–6 Deng Y, Cai C, Xia D, Ding S, Chen J, Wang T (2017) Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth 8:499–513. https://doi.org/10.5194/se-8-499-2017 Djoukbala O, Hasbaia M, Benselama O, Mazour M (2018) Comparison of the erosion prediction models from USLE, MUSLE and RUSLE in a Mediterranean watershed, case of Wadi Gazouana (N–W of Algeria). Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0562-6 Egboka BE, Okpoko EI (1984) Gully erosion in the Agulu–Nanka region of Anambra State Nigeria, vol 144. IAHS-AISH publication, Wallingford, pp 335–347 Egbueri JC (2021) Use of joint supervised machine learning algorithms in assessing the geotechnical peculiarities of erodible tropical soils from southeastern Nigeria. Geomech Geoeng 10:1–8. https://doi.org/10.1080/17486025.2021.2006803 Egbueri JC, Igwe O (2020) The impact of hydrogeomorphological characteristics on gullying processes in erosion-prone geological units in parts of southeast Nigeria. Geol Ecol & Landscapes 5(3):227–240. https://doi.org/10.1080/24749508.2020.1711637 Egbueri JC, Igwe O (2021) Development of a novel numerical indicator (DLPI) for assessing the detachability and liquefaction potentials of soils in erosion-prone areas. Model Earth Sys & Environ 7(4):2407–2429. https://doi.org/10.1007/s40808-020-00999-0 Egbueri JC, Igwe O (2022) Assessing the role of soil engineering properties in gully development and enlargement in southeast Nigeria using geostatistical and novel indexical techniques. Environ Earth Sci 81(1):1–24. https://doi.org/10.1007/s12665-021-10127-5 Egbueri JC, Igwe O, Nnamani CH (2017) Assessment of the engineering properties and suitability of some tropical soils as backfill materials. Int J Trends Sci Res Dev 2(1):590–605 Egbueri JC, Igwe O, Unigwe CO (2021) Gully slope distribution characteristics and stability analysis for soil erosion risk ranking in parts of southeastern Nigeria: a case study. Environ Earth Sci 80(7):1–9 Emeh C, Igwe O (2018) Effect of environmental pollution on susceptibility of sesquioxide-rich soils to water erosion. Geol Ecol & Landscapes 2(2):115–126. https://doi.org/10.1080/24749508.2018.1452484 Eswaram HR, Lal R, Reich PF (2001) Land degradation an overview in response in land degradation eds. EM Bridges, pp 132–143 Eze HI (2007) Effect of rainfall intensity and energy on gully development in northeastern Enugu state, Nigeria. Niger J Technol 26(1):91–96 Ezezika OC, Adetona O (2011) Resolving the gully erosion problem in southeastern Nigeria: innovation through public awareness and community-based approaches. J Soil Sci Environ Manag 2(10):286–291 Floyd B (1965) Soil Erosion and deterioration in Eastern Nigeria: a geographic appraisal. Nigerian Geogr J 8(1):33–44 Gelagay HS, Minale AS (2016) Soil loss estimation using GIS and remote sensing techniques: a cast of Koga watershed, Northwestern Ethiopia. Int Soil Water Conserv 4:126–136 GeoStudio (2012) Stability modeling with GeoStudio. GEO-SLOPE International Ltd, Calgary, Canada, p 242 George NJ, Akpan AE, Obot IB, Akpanetuk NJ (2008) Geoelectrical investigation of erosion and flooding using the lithologic compositions of erosion and flood-stricken road in Ukanafun local government area, Akwa Ibom state, Southern Nigeria. Disaster Adv 1(4):46–51 GEO-SLOPE International Ltd. (2015) Stability modelling with SLOPE/W 2016 version. Printed in Canada, 244. Gunawan G, Dwita S, Herr S, Sulostiowemi W (2013) Soil Erosion estimation based on GIS and remote sensing for supporting integrated water resources conservation management. Int J Technol 2(3):147–156 Hacisalihoglu S, Oktan E, Yucesan Z (2010) Predicting soil erosion in oriental spruce (Picea orientalis) stands in eastern Black sea region of Turkey. Afr J Agric Res 5(16):2200–2214 Hao X, Ball BC, Culley JLB, Carter MR, Parkin GW (2008) Soil density and porosity. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis. CRC Press, Boca Raton, pp 743–759 Hill KM (2010) Understanding environmental pollution, 3rd edn. Cambridge University Press, New York Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56(3):275–370 Hudec PP, Simpson F, Akpokodje EG, Umenweke MO (2005) Anthropogenic contribution to gully initiation and propagation in southeastern Nigeria. Rev Eng Geol 16:149–158 Igwe O (2017) The hydrogeological attributes and mechanisms of a receding sedimentary terrain in the Anambra basin, Southern Nigeria. Environ Earth Sci 76(5):1–22 Igwe O, Chukwu C (2018) Evaluation of the mechanical properties and critical slope parameters of mine tailings at Enyigba, South eastern, Nigeria. Int J Geo Eng 9(1):1–2. https://doi.org/10.1186/s40703-018-0075-1 Igwe O, Egbueri JC (2018) The characteristics and the erodibility potentials of soils from different geologic formations in Anambra state, southeastern Nigeria. J Geol Soc India 92(4):471–478 Igwe O, Una CO (2019) Landslide impacts and management in Nanka area, Southeast Nigeria. Geoenviron Disasters 6(1):1–2. https://doi.org/10.1186/s40677-019-0122-z Isikwue MO, Abutu C, Onoja SB (2012) Erodibility of soils of the South West Benue state, Nigeria. Pac J Sci Technol 3(2):437–447 Jegede G (2000) Effect of soil properties on pavement failures along the F209 highway at Ado-Ekiti, south–western Nigeria. Constr Build Mater 14:311–315. https://doi.org/10.1016/S0950-0618(00)00033-7 Jegede OG, Olaleye BM (2013) Evaluation of engineering geological and geotechnical properties of sub grade soils along the re-aligned Igbara–Odo Ikogosi highway, South Western, Nigeria. Int J Eng Sci 2(5):18–21 Jing K, Wang WZ, Zhang FL (2005) Soil erosion and environment in China. Science Press, Beijing, p 355 Jungle B, Abaidoo R, Chikoye D, Stahr K, Lal R (2008) Research report on soil conservation in Nigeria: past and present on-station and on-farm initiatives. In: Soil water conservers society, Ankeny, IOWA, USA, pp 12–16 Kalinski ME (2011) Soil mechanics lab manual, 2nd edn. Wiley, Hoboken, p 193 Kaur R, Singh O, Gurung HP (2003) Soil erodibility indices-their development, use and efficiency testing on Indian soils: a review. Indian J Soil Conserv 31(3):234–242 Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539. https://doi.org/10.1002/ldr.472 Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, San Francisco Mallick J, Hussein AW, Rahman A, Ahmed M, Khan RA (2016) Spatial variability of soil erodibility and its correlation with soil properties in semi-arid mountainous watershed, Saudi Arabia. Geocarto Int 31(6):661–681. https://doi.org/10.1080/10106049.2015.1073368 Morgan RPC (1979) Soil erosion. Longman, London and New York, p 113 Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Geotechnique 15:79–93 Nandi A, Luffman I (2012) Erosion related changes to physicochemical properties of ultisols distributed on calcareous sedimentary rocks. J Sustain Dev 5(8):52–68 Nebeokike UC, Igwe O, Egbueri JC, Ifediegwu SI (2020) Erodibility characteristics and slope stability analysis of geological units prone to erosion in Udi area, southeast Nigeria. Model Earth Syst Environ 6(2):1061–1074. https://doi.org/10.1007/s40808-020-00741-w Ngah SA, Nwankwoala HO (2013) Evaluation of subsoil geotechnical properties for shallow foundation design in Onne, rivers state. Nigeria Int J Eng Sci 2(11):8–16 Nwajide CS (1992) Gullying in the Idemilli river catchment, Anambra site, Nigeria: theory and cure. In: Freeth SJ, Ofoegbu CO, Onuoha KM (eds) Natural hazards in West and Central Africa. Vieweg, Wiesbaden, pp 149–162 Nwajide CA, Hoque M (1979) Gulling processes in South–Eastern Nigeria. Nigerian Field J 44(2):65–74 Nzeadibe TC, Ajaero CK, Okonkwo EE, Okpoko PU, Akukwe TI, Njoku-tony RF (2015) Integrating community perceptions and cultural diversity in social impact assessment in Nigeria. Environ Impact Assess Rev 55:74–83 Nwajide SC (1990) Cretaceous sedimentation and paleogeography of the central benue trough. In: Ofoegbu CO (ed) The benue tough structure and evolution international monograph series (pp 19–38). Braunschweig O’Geen AT, Schwankl LJ (2006) Understanding soil erosion in irrigated agriculture. Regents of the University of California, Division of Agriculture and Natural Resources. Publication 8196. Obiadi II, Nwosu CM, Ajaegwu NE, Anakwuba EK, Onuigbo NE, Akpunonu EO, Ezim OE (2011) Gully erosion in Anambra state, South East Nigeria: issues and solution. Int J Environ Sci 2(2):796–804 Ofomata GEK, Umeuduji JE (1994) Topographic constraints to urban land uses in Enugu, Nigeria. Lands Urban Plan 28:129–141 Ofomata GEK (1985) Soil Erosion in Nigeria. The Views of a Geomorphologist University of Nigeria Inaugural Lecture Series No.7, University of Nigeria Press Nsukka, Nigeria Ogbukagu IM (1976) Soil erosion in the northern parts of Awka–Orlu uplands, Nigeria. J Min Geol 13:6–19 Okogbue CO (1992) The 1988 Nanka landslide, Anambra state, Nigeria. Bull Int Assoc Eng Geol 46(1):79–87 Okorafor OO, Akinbile CO, Adeyemo AJ (2017) Soil erosion in south eastern Nigeria: a review. Sci Res J 5(6):30–37 Okoyeh EI, Akpan AE, Egboka BCE, Okeke HI (2014) An assessment of the influences of surface and subsurface water level dynamics in the development of gullies in Anambra state, southeastern Nigeria. Earth Interact 18:1–24 Ologe KO (1972) Gullies in the Zaria area: a preliminary study of head scarp recession. Savanna 1:55–66 Olumuyiwa OF, Adekunle A (2020) Geo engineering investigation of an erosion highway structural failure along Ifon–Benin highway, south western Nigeria. Earth Sci Malays 4:151–160 Osadebe CC, Akpokodje EG (2007) Statistical analysis of variability in properties of soils in gully erosion sites of Agulu–Nanka–Oko area, southeastern Nigeria. J Min Geol 43(2):197–202 Paige-Green P (2003) Geology and petrology of road construction materials revisited. In: Paper presented at 13th ARCSMGE conference in Marrakech, Morocco. Panek T, Brazdi R, Klimes J, Smolkova V, Hradecky J, Zahradnıcek P (2011) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides 8(4):507–516 Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8(1):119–137 Poesen J (2011) Challenges in gully erosion research. Landf Anal 17:5–9 Praus P (2020) Information entropy for evaluation of wastewater composition. Water 12(4):1095. https://doi.org/10.3390/w12041095 Rahimi A, Rahardjo H, Leong EC (2010) Effect of antecedent rainfall patterns on rainfall-induced slope failure. J Geotech Geoenviron Eng 137(5):483–491 Reidenouer DR (1970) Shale suitability. Phase II: Pennsylvania department of transportation, bureau of materials, testing and research. Interim Rep 1:198 Reyment R (1965) Aspects of the geology of Nigeria. University of Ibadan Press, Ibadan, p 144 Salako FK (2006) Rainfall temporal variability and erosivity in sub-humid zones of southern Nigeria. Land Degrad Dev 17(5):541–555 Shellberg JP, Brooks AP, Sencer JR, Ward DP (2013) The hydrogeomorphic influences on alluvial gully erosion along the Mitchell river fluvial megafan. Hydrol Process 27(7):1086–1104 Singh MJ, Khera KL (2008) Soil erodibility indices under different land uses in lower Shiwaliks. Trop Ecol 49(2):113–119 Singh MJ, Khera KL, Santra P (2012) Selection of soil physical quality indicators in relation to soil erodibility. Arch Agro Soil Sci 58(6):657–672. https://doi.org/10.1080/03650340.2010.537324 Song Y, Liu L, Yan P, Cao T (2005) A review of soil erodibility in water and wind erosion research. J Geogr Sci 15(2):167–176 World Commission in Environment (1987) Our common future. Oxford University Press, Oxford Tuckfield CG (1964) Gully erosion in the new forest, Hampshire. Am J Sci 262:759–807 Ukah BU, Ameh PD, Egbueri JC, Unigwe CO, Ubido OE (2020) Impact of effluent-derived heavy metals on the groundwater quality in Ajao industrial area, Nigeria: an assessment using entropy water quality index (EWQI). Int J Energ Water Resour. https://doi.org/10.1007/s42108-020-00058-5 USACE (2004) General design and construction considerations for earth and rock fill dams handbook manual. US Army Corps of Engineers, Washington, p 130 Van-Zijl GM (2010) An investigation of the soil properties controlling gully erosion in a sub-catchment in Maphutseng, Lesotho. Thesis, Stellenbosch University. Vittorini S (1972) The effects of soil erosion in an experimental station in the Pliocene clay of the Val d’ Era (Tuscany) and its influence on the evolution of the slopes. Acta Geogr Debrecina 10:71–81 Wang YH, Xie XD, Wang CY (2000) Formation mechanism of calamities due to Benggang processes of weathered granitic rocks. J Mt Sci 6:496–501 Wijesundara NC, Abeysingha NS, Dissanayake DMSLB (2018) GIS based soil loss estimation using RUSLE model: a case of Kirindi Oya river basin, Sri Lanka. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0419-z Zheng F, Yang QK, Wing ZL (2004) Water erosion prediction model. Res J Soil Water Conserv 11(4):13–24 Zhu Y, Tian D, Yan F (2020) Effectiveness of entropy weight method in decision-making. Math Probl Eng. https://doi.org/10.1155/2020/3564835 Zhuang J, Cui P, Peng J, Hu K, Iqbal J (2013) Initiation process of debris flows on different slopes due to surface flow and trigger-specific strategies for mitigating post-earthquake in old Beichuan county, China. Environ Earth Sci 68(5):1391–1403