Nghiên cứu các vùng không ổn định của các tấm nan mỏng không đồng nhất chịu tải trọng dao động

Mohammad Reza Barati1, Ashraf Zenkour2,3
1Aerospace Engineering Department and Center of Excellence in Computational Aerospace, AmirKabir University of Technology, Tehran, Iran
2Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
3Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt

Tóm tắt

Sự ổn định động của các tấm nan không đồng nhất có chức năng gradient sigmoid (S-FGM) trên nền đàn hồi dưới tải trọng dao động hai chiều được nghiên cứu thông qua lý thuyết tấm bốn biến. Một quy tắc trộn dựa trên hai luật sức mạnh được áp dụng để mô tả tính chất vật liệu gradient. Nguyên lý Hamilton được ứng dụng để suy diễn các phương trình điều khiển. Các phương trình này được diễn đạt dưới dạng các phương trình Mathieu-Hill, và phương pháp Bolotin được thực hiện để đánh giá các vùng không ổn định. Độ chính xác của phương pháp hiện tại được xác minh bằng cách so sánh kết quả thu được với các giá trị có trong tài liệu. Các tác động của yếu tố tải tĩnh và động, tham số phi địa phương, các tham số nền đàn hồi, chỉ số gradient và điều kiện biên đến các vùng không ổn định của các tấm nan S-FGM được kiểm tra.

Từ khóa

#tấm nan #không ổn định #tải trọng dao động #nền đàn hồi #tính chất vật liệu gradient

Tài liệu tham khảo

Akavci SS (2014) An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation. Compos Struct 108:667–676 Akbarzadeh AH, Abedini A, Chen ZT (2015) Effect of micromechanical models on structural responses of functionally graded plates. Compos Struct 119:598–609 Alijani F, Amabili M (2013) Non-linear dynamic instability of functionally graded plates in thermal environments. Int J Non Linear Mech 50:109–126 Ansari R, Shojaei MF, Shahabodini A, Bazdid-Vahdati M (2015) Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach. Compos Struct 131:753–764 Ansari R, Shahabodini A, Shojaei MF (2016) Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations. Physica E 76:70–81 Atmane HA, Tounsi A, Ziane N, Mechab I (2011) Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section. Steel Compos Struct 11(6):489–504 Barati MR (2017a) Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments. Eur Phys J Plus 132(10):434 Barati MR (2017b) Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity. Eur Phys J Plus 132(9):378 Barati MR (2017c) Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1177/0954406217729421 Barati MR, Zenkour AM, Shahverdi H (2016) Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory. Compos Struct 141:203–212 Belkorissat I, Houari MSA, Tounsi A, Bedia EA, Mahmoud SR (2015) On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos Struct 18(4):1063–1081 Ebrahimi F, Barati MR (2016) Nonlocal thermal buckling analysis of embedded magneto-electro-thermo-elastic nonhomogeneous nanoplates. Iran J Sci Technol Trans Mech Eng 40(4):243–264 Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710 Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248 Grover N, Singh BN, Maiti DK (2013) New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates. AIAA J 51(8):1861–1871 Grover N, Singh BN, Maiti DK (2015) Free vibration and buckling characteristics of laminated composite and sandwich plates implementing a secant function based shear deformation theory. Proc Inst Mech Eng Part C J Mech Eng Sci 229(3):391–406 Han SC, Lomboy GR, Kim KD (2008) Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element. Int J Struct Stab Dyn 8(02):203–229 Han SC, Park WT, Jung WY (2015) A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface. Compos Struct 131:1081–1089 Hosseini M, Jamalpoor A (2015) analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials. J Therm Stresses 38(12):1428–1456 Ke LL, Wang YS (2011) Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct 93(2):342–350 Kulkarni K, Singh BN, Maiti DK (2015) Analytical solution for bending and buckling analysis of functionally graded plates using inverse trigonometric shear deformation theory. Compos Struct 134:147–157 Lee WH, Han SC, Park WT (2015) A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation. Compos Struct 122:330–342 Li L, Hu Y (2017) Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Compos Struct 172:242–250 Mechab B, Mechab I, Benaissa S, Ameri M, Serier B (2016) Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler–Pasternak elastic foundations. Appl Math Model 40(2):738–749 Natarajan S, Chakraborty S, Thangavel M, Bordas S, Rabczuk T (2012) Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput Mater Sci 65:74–80 Prakash T, Singha MK, Ganapathi M (2009) Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates. Comput Mech 43(3):341–350 Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752 Taj MG, Chakrabarti A, Sheikh AH (2013) Analysis of functionally graded plates using higher order shear deformation theory. Appl Math Model 37(18):8484–8494 Thai HT, Vo TP (2013) A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl Math Model 37(5):3269–3281 Zenkour AM (2009) The refined sinusoidal theory for FGM plates on elastic foundations. Int J Mech Sci 51(11):869–880 Zenkour AM (2016) Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Physica E 79:87–97 Zhu X, Li L (2017) Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos Struct 178:87–96