Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Syldatk, C., Müller, R., Siemann, M. & Wagner, F. Microbial and enzymatic production of D-amino acids from DL-5-monosubstituted hydantoins. In Hydrolysis and formation of hydantoins in biocatalytic production of amino acids and derivatives. Biocatalytic production of amino acids and derivitives. (eds Rozzell, J.D. & Wagner, F.) 75–127 (Hanser Publisher, New York; 1992).
Syldatk, C., Müller, R., Pietzsch, M. & Wagner, F. Microbial and enzymatic production of L-amino acids from DL-5-monosubstituted hydantoins. In Hydrolysis and formation of hydantoins in biocatalytic production of amino acids and derivatives. (eds Rozzell, J.D. & Wagner, F.) 131–1176 (Hanser Publisher, New York; 1992).
Drauz, K. Chiral amino acids: a versatile tool in the synthesis of pharmaceuticals and fine chemicals. Chimia 51, 310–314 (1997).
Wagner, F., Hantke, B., Wagner; T., Drauz K. & Bommarius, A. Microorganism, use thereof and process for the production of L-alpha-amino acids. US 5714355 (1998).
May, O. et al. Substrate-dependent enantioselectivity of a novel hydantoinase from Arthrobacter aurescens DSM 3745: purification and characterization as a new member of cyclic amidases. J. Biotechnol. 61, 1–13 (1998).
Wagner, T., Hantke, B. & Wagner, F. Production of L-methionine from D,L-5-(2-methylthioethyl)hydantoin by resting cells of a new mutant strain of Arthrobacter species DSM 7330. J. Biotechnol. 46, 63–69 (1996).
Völkel, D. & Wagner, F. Reaction mechanism for the conversion of 5-monosubstituted hydantoins to enantiomerically pure L-amino acids. Ann. NY Acad. Sci. 750, 1–9 (1995).
Arnold, F.H. & Moore, J.C. Optimizing industrial enzymes by directed evolution. Adv. Biochem. Eng. Biotechnol. 58, 1–14 (1997).
Arnold, F.H. & Wintrode, P.L. Fermentation, biocatalysis, and bioseparation. In Encyclopedia of bioprocess technology (eds Flickinger, M.C. & Drew, S.W.) 971–987 (John Wiley & Sons, New York, NY; 1999).
Matcham, G.W. & Bowen, A.R.S. Biocatalysis for chiral intermediates: meeting commercial and technical challenges. CHIM. OGGI 14, 20–24 (1996).
Reetz, M.T., Zonta A., Schimossek K., Liebeton, K. & Jaeger, K.-E. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew. Chem. Int. Edn. Engl. 36, 2830–2832 (1998).
Reetz, M.T. & Jaeger, K.-E. Superior biocatalysts by directed evolution. Top. Curr. Chem. 200, 31–57 (1999).
Miyazaki, K. & Arnold, F.H. Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function J. Mol. Evol. 49, 716–720 (1999).
Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J. & Goodman, R.M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).
Fersht, A. (ed.) Enzyme structure and mechanism. (W.H. Freeman and Co., New York, NY; 1985).
Wilms, B. et al. Cloning, nucleotide sequence and expression of a new L-N-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli. J. Biotechnol. 68, 101–113 (1999).
Volff, J.-N., Eichenseer, C., Viell, P., Piendl, W. & Altenbuchner, J. Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplificable element AUDI of Streptomyces lividans 66. Mol. Microbiol. 21, 1037–1047 (1996).
Yanisch-Perron, C., Viera, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC vectors. Gene 33, 103–109 (1984).
Luria, S.E., Adams, J.N. & Ting, R.C. Transduction of lactose-utilizing ability among strains of Escherichia coli and Shigella dysenteriae and properties of phage particles. Virology 12, 348–390 (1960).