Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution

Expert Systems with Applications - Tập 41 - Trang 1915-1927 - 2014
Fei Gao1, Feng-xia Fei1, Xue-jing Lee1, Heng-qing Tong1, Yan-fang Deng1, Hua-ling Zhao2
1Department of Mathematics, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, People’s Republic of China
2Department of Statistics, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, People’s Republic of China

Tài liệu tham khảo

Agrawal, 2012, Synchronization of fractional order chaotic systems using active control method, Chaos, Solitons and Fractals, 45, 737, 10.1016/j.chaos.2012.02.004 Al-Assaf, 2004, Identification of fractional chaotic system parameters, Chaos, Solitons & Fractals, 22, 897, 10.1016/j.chaos.2004.03.007 Bhalekar, 2010, Fractional ordered Liu system with time-delay, Communications in Nonlinear Science and Numerical Simulation, 15, 2178, 10.1016/j.cnsns.2009.08.015 Cafagna, 2009, Hyperchaos in the fractional-order Rössler system with lowest-order, International Journal of Bifurcation and Chaos, 19, 339, 10.1142/S0218127409022890 Chang, 2007, Parameter identification of Chen and Lu systems: A differential evolution approach, Chaos Solitons & Fractals, 32, 1469, 10.1016/j.chaos.2005.11.067 Chen, 2008, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36, 1305, 10.1016/j.chaos.2006.07.051 Chiang, 2010, A 2-opt based differential evolution for global optimization, Applied Soft Computing, 10, 1200, 10.1016/j.asoc.2010.05.012 Dadras, 2012, Four-wing hyperchaotic attractor generated from a new 4d system with one equilibrium and its fractional-order form, Nonlinear Dynamics, 67, 1161, 10.1007/s11071-011-0060-0 Deng, W., E, S., Sun, D., Wang, P., Zhang, D., & Xu, W. (2006). Fabrication of vertical coupled polymer microring resonator. In Y. -C. Chung, & S. Xie (Eds.), ICO20: Optical communication: Vol. 6025. Proceedings of the SPIE (pp. 334–339). Deng, 2005, Chaos synchronization of the fractional Lü system, Physica A: Statistical Mechanics and its Applications, 353, 61, 10.1016/j.physa.2005.01.021 Deng, 2007, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 48, 409, 10.1007/s11071-006-9094-0 Deng, 2007, Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system, Physics Letters A, 369, 438, 10.1016/j.physleta.2007.04.112 Diethelm, 2011, An efficient parallel algorithm for the numerical solution of fractional differential equations, Fractional Calculus and Applied Analysis, 14, 475, 10.2478/s13540-011-0029-1 Diethelm, 2002, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 229, 10.1006/jmaa.2000.7194 Diethelm, 2002, A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3, 10.1023/A:1016592219341 Doha, 2012, A new Jacobi operational matrix: An application for solving fractional differential equations, Applied Mathematical Modelling, 36, 4931, 10.1016/j.apm.2011.12.031 Fazzino, S., & Caponetto, R. (2012). A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems. Communications in Nonlinear Science and Numerical Simulation. <http://dx.doi.org/10.1016/j.cnsns.2012.06.013>. Fei, G., Feng-xia, F., Qian, X., Yan-fang, D., Yi-bo, Q., & Balasingham, I. Reconstruction mechanism with self-growing equations for hyper, improper and proper fractional chaotic systems through a novel Non-Lyapunov approach [Arxiv]. Gao, 2005, Computing unstable period orbits of discrete chaotic system though differential evolutionary algorithms basing on elite subspace, Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 25, 96 Gao, F., Fei, F. -x., Xu, Q., Deng, Y. -f., & Qi, Y. -b. Identification of unknown parameters and orders via cuckoo search oriented statistically by differential evolution for non-commensurate fractional order chaotic systems. Available at: arXiv:1208.0049 [eprint]. Gao, F., Fei, F. -X., Deng, Y. -F., Qi, Y. -B., & Ilangko, B. A novel non-Lyapunov approach through artificial bee colony algorithm for detecting unstable periodic orbits with high orders. Expert Systems with Applications. <http://dx.doi.org/10.1016/j.eswa.2012.04.083>. Gao, 2009, Detecting unstable periodic orbits of nonlinear mappings by a novel quantum-behaved particle swarm optimization non-Lyapunov way, Chaos, Solitons & Fractals, 42, 2450, 10.1016/j.chaos.2009.03.119 Gao, 2013, Parameter identification for van der Pol–Duffing oscillator by a novel artificial bee colony algorithm with differential evolution operators, Applied Mathematics and Computation, 222, 132, 10.1016/j.amc.2013.07.053 Gao, 2009, Parameter estimation for chaotic system with initial random noises by particle swarm optimization, Chaos, Solitons & Fractals, 42, 1286, 10.1016/j.chaos.2009.03.074 Gao, 2008, Parameters estimation online for lorenz system by a novel quantum-behaved particle swarm optimization, Chinese Physics B, 17, 1196, 10.1088/1674-1056/17/4/008 Gao, 2012, A novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises, Expert Systems with Applications, 39, 1779, 10.1016/j.eswa.2011.08.076 Gao, 2010, An novel optimal pid tuning and on-line tuning based on artificial bee colony algorithm, 425 Gao, 2010, Online synchronization of uncertain chaotic systems by artificial bee colony algorithm in a non-Lyapunov way, 1 Gao, 2010, An artificial bee colony algorithm for unknown parameters and time-delays identification of chaotic systems, 659 Gao, 2010, A novel non-Lyapunov approach in discrete chaos system with rational fraction control by artificial bee colony algorithm, 317 Gao, 2012, Solving problems in chaos control though an differential evolution algorithm with region zooming, Applied Mechanics and Materials, 110–116, 5048 Gao, 2005, Computing two linchpins of topological degree by a novel differential evolution algorithm, International Journal of Computational Intelligence and Applications, 5, 335, 10.1142/S1469026805001647 Gao, 2006, Parameter estimation for chaotic system based on particle swarm optimization, Acta Physica Sinica, 55, 577, 10.7498/aps.55.577 Grigorenko, 2003, Chaotic dynamics of the fractional lorenz system, Physical Review Letters, 91, 034101, 10.1103/PhysRevLett.91.034101 Jian-Bing, 2011, Synchronizing improper fractional Chen chaotic system, Journal of Shanghai University (Natural Science Edition), 17, 734 Jun-Guo, 2005, Chaotic dynamics and synchronization of fractional-order genesio-tesi systems, Chinese Physics B, 14, 1517, 10.1088/1009-1963/14/8/007 Kaslik, 2012, Analytical and numerical methods for the stability analysis of linear fractional delay differential equations, Journal of Computational and Applied Mathematics, 236, 4027, 10.1016/j.cam.2012.03.010 Kenneth, 2005 Kilbas, 2006, Vol. 204 Kober, 1940, On fractional integrals and derivatives, The Quarterly Journal of Mathematics os-11, 193, 10.1093/qmath/os-11.1.193 Li, 2004, Chaos in the fractional order Chen system and its control, Chaos, Solitons and Fractals, 22, 549, 10.1016/j.chaos.2004.02.035 Li, 2004, Chaos and hyperchaos in the fractional-order Rössler equations, Physica A: Statistical Mechanics and its Applications, 341, 55, 10.1016/j.physa.2004.04.113 Li Chun-Lai, 2012, A new hyperchaotic system and its adaptive tracking control, Acta Physica Sinica, 61, 40504, 10.7498/aps.61.040504 Li Dong, 2012, Synchronization for fractional order hyperchaotic Chen system and fractional order hyperchaotic Rössler system with different structure, Acta Physica Sinica, 61, 10.7498/aps.61.050502 Li, 2004, Chaos in Chen’s system with a fractional order, Chaos, Solitons & Fractals, 22, 443, 10.1016/j.chaos.2004.02.013 Liu, 2007, A hyperchaotic system and its fractional order circuit simulation, Acta Physica Sinica, 56, 6865, 10.7498/aps.56.6865 Liu, 2011, Forming and implementing a hyperchaotic system with rich dynamics, Chinese Physics B, 20, 090510, 10.1088/1674-1056/20/9/090510 Li, 2006, Parameters identification of chaotic systems via chaotic ant swarm, Chaos, Solitons & Fractals, 28, 1204, 10.1016/j.chaos.2005.04.110 Lorénz, 1963, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130, 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 Lu, 2005, Chaotic dynamics and synchronization of fractional-order Arneodo? systems, Chaos, Solitons and Fractals, 26, 1125, 10.1016/j.chaos.2005.02.023 Lu, 2006, A note on the fractional-order Chen system, Chaos, Solitons and Fractals, 27, 685, 10.1016/j.chaos.2005.04.037 Mahmoud, 2009, On the hyperchaotic complex Lü system, Nonlinear Dynamics, 58, 725, 10.1007/s11071-009-9513-0 Miller, 1993 Min Fu-Hong, 2009, Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system, Acta Physica Sinica, 58, 1456, 10.7498/aps.58.1456 Musielak, 2009, High-dimensional chaos in dissipative and driven dynamical systems, International Journal of Bifurcation and Chaos, 19, 2823, 10.1142/S0218127409024517 Odibat, 2012, A note on phase synchronization in coupled chaotic fractional order systems, Nonlinear Analysis: Real World Applications, 13, 779, 10.1016/j.nonrwa.2011.08.016 Odibat, 2010, Synchronization of chaotic fractional-order systems via linear control, International Journal of Bifurcation and Chaos, 20, 81, 10.1142/S0218127410025429 Parlitz, 1996, Estimating model parameters from time series by autosynchronization, Physical Review Letters, 76, 1232, 10.1103/PhysRevLett.76.1232 Petráš, 2008, A note on the fractional-order Chua system, Chaos, Solitons & Fractals, 38, 140, 10.1016/j.chaos.2006.10.054 Petráš, 2011, Fractional-order chaotic systems, 10.1007/978-3-642-18101-6_5 Petráš, 2011, Fractional calculus, 10.1007/978-3-642-18101-6_2 Rössler, 1979, An equation for hyperchaos, Physics Letters A, 71, 155, 10.1016/0375-9601(79)90150-6 Samko, 1993 Si, G., Sun, Z., Zhang, H., & Zhang, Y. (2012). Parameter estimation and topology identification of uncertain fractional order complex networks. Communications in Nonlinear Science and Numerical Simulation. <http://dx.doi.org/10.1016/j.cnsns.2012.05.005>. Si, G., Sun, Z., Zhang, H., & Zhang, Y. (2012). Parameter estimation and topology identification of uncertain fractional order complex networks. Communications in Nonlinear Science and Numerical Simulation. <http://dx.doi.org/10.1016/j.cnsns.2012.05.005>. Si, 2012, Projective synchronization of different fractional-order chaotic systems with non-identical orders, Nonlinear Analysis: Real World Applications, 13, 1761, 10.1016/j.nonrwa.2011.12.006 Song, 2010, Chaos synchronization for a class of nonlinear oscillators with fractional order, Nonlinear Analysis: Theory Methods and Applications, 72, 2326, 10.1016/j.na.2009.10.033 Storn, 1997, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 341, 10.1023/A:1008202821328 Sun, 2009, Bifurcations of fractional-order diffusionless lorenz system, Electronic Journal of Theoretical Physics, 6, 123 Tang, 2012, Parameter identification of commensurate fractional-order chaotic system via differential evolution, Physics Letters A, 376, 457, 10.1016/j.physleta.2011.12.008 Tavazoei, 2007, A necessary condition for double scroll attractor existence in fractional-order systems, Physics Letters A, 367, 102, 10.1016/j.physleta.2007.05.081 Tavazoei, 2008, Chaotic attractors in incommensurate fractional order systems, Physica D: Nonlinear Phenomena, 237, 2628, 10.1016/j.physd.2008.03.037 Wang, 2006, A new modified hyperchaotic Lü system, Physica A: Statistical Mechanics and its Applications, 371, 260, 10.1016/j.physa.2006.03.048 Wu, 2012, Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, Nonlinear Dynamics, 69, 667, 10.1007/s11071-011-0295-9 Wu, 2009, Chaos in the fractional-order Lorenz system, International Journal of Computer Mathematics, 86, 1274, 10.1080/00207160701864426 Yang, 2009, Parameters identification of chaotic systems by quantum-behaved particle swarm optimization, International Journal of Computer Mathematics, 86, 2225, 10.1080/00207160903029802 Yang, 2009, Hyperchaotic attractors from a linearly controlled Lorenz system, Nonlinear Analysis: Real World Applications, 10, 1601, 10.1016/j.nonrwa.2008.02.008 Yuan, 2012, Parameter identification and synchronization of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 305, 10.1016/j.cnsns.2011.04.005 Yu, 2009, Dynamic analysis of a fractional-order Lorenz chaotic system, Chaos, Solitons & Fractals, 42, 1181, 10.1016/j.chaos.2009.03.016 Yu, 2012, A 4-d chaos with fully qualified four-wing type, Acta Physica Sinica, 61 Zhang, 2012, Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems, Chinese Physics B, 21, 030505, 10.1088/1674-1056/21/3/030505 Zhang, 2009, Adaptive synchronization of the fractional-order unified chaotic system, Wuli Xuebao/Acta Physica Sinica, 58, 6039, 10.7498/aps.58.6039 Zhao Ling-Dong, 2010, Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters, Acta Physica Sinica, 59, 2305, 10.7498/aps.59.2305 Zhu, 2012, Identification of fractional-order systems via a switching differential evolution subject to noise perturbations, Physics Letters A, 376, 3113, 10.1016/j.physleta.2012.09.042