Inverse problems and index formulae for Dirac operators
Tài liệu tham khảo
Anderson, 2004, Boundary regularity for the Ricci equation, geometric convergence, and Gel'fand inverse boundary problem, Invent. Math., 105, 261, 10.1007/s00222-004-0371-6
Astala, 2006, Calderon's inverse conductivity problem in the plane, Ann. of Math., 163, 265, 10.4007/annals.2006.163.265
Astala, 2005, Calderon's inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30, 207, 10.1081/PDE-200044485
Atiyah, 1975, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc., 77, 43, 10.1017/S0305004100049410
Belishev, 1987, An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297, 524
Belishev, 1987, A nonstationary inverse problem for the multidimensional wave equation “in the large”, Zap. Nauchn. Sem. (LOMI), 165, 21
Belishev, 1992, To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17, 767, 10.1080/03605309208820863
Berline, 1992
Bismut, 1990, Families index for manifolds with boundary, superconnections, and cones. I. Families of manifolds with boundary and Dirac operators, J. Funct. Anal., 89, 313, 10.1016/0022-1236(90)90098-6
Blagovestchenskii, 1969, A one-dimensional inverse boundary value problem for a second order hyperbolic equation, Zap. Nauchn. Sem. LOMI, 15, 85
Booss-Bavnbek, 1993
Brüning, 1990, L2-index theorems on certain complete manifolds, J. Differential Geom., 32, 491, 10.4310/jdg/1214445317
Brüning, 2001, On boundary value problems for Dirac type operators. I. Regularity and self-adjointness, J. Funct. Anal., 185, 1, 10.1006/jfan.2001.3753
Daskalov, 2000, Explicit formulae for the inverse problem for the regular Dirac operator, Inverse Problems, 16, 247, 10.1088/0266-5611/16/1/318
Eskin, 2003, Inverse boundary value problems and the Aharonov–Bohm effect, Inverse Problems, 19, 49, 10.1088/0266-5611/19/1/303
Farinelli, 1998, On the spectrum of the Dirac operator under boundary conditions, J. Geom. Phys., 28, 67, 10.1016/S0393-0440(98)00013-8
Gilbarg, 1983
Gilkey, 1973, Curvature and the eigenvalues of the Laplacian for elliptic complexes, Adv. Math., 10, 344, 10.1016/0001-8708(73)90119-9
Gilkey, 1993, On the index of geometrical operators for Riemannian manifolds with boundary, Adv. Math., 102, 129, 10.1006/aima.1993.1063
Grebert, 1992, Inverse scattering for the Dirac operator on the real line, Inverse Problems, 8, 787, 10.1088/0266-5611/8/5/007
Greenleaf, 2007, Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys., 275, 749, 10.1007/s00220-007-0311-6
Greenleaf, 2009, Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), 46, 55, 10.1090/S0273-0979-08-01232-9
Hachem, 1995, The ∂¯ approach to inverse scattering for Dirac operators, Inverse Problems, 11, 123, 10.1088/0266-5611/11/1/007
Hijazi, 2001, Eigenvalues of the Dirac operator on manifolds with boundary, Comm. Math. Phys., 221, 255, 10.1007/s002200100475
Hijazi, 2002, Eigenvalue boundary problems for the Dirac operator, Comm. Math. Phys., 231, 375, 10.1007/s00220-002-0725-0
Horvath, 2001, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc., 353, 4155, 10.1090/S0002-9947-01-02765-9
Imanuvilov, 2001, Global uniqueness and stability in determining coefficients of wave equations, Comm. Partial Differential Equations, 26, 1409, 10.1081/PDE-100106139
Isozaki, 1997, Inverse scattering theory for Dirac operators, Ann. Inst. H. Poincaré Phys. Theor., 66, 237
Jung, 1997, Geometrical approach to inverse scattering for the Dirac equation, J. Math. Phys., 38, 39, 10.1063/1.531856
Kachalov, 1998, Multidimensional inverse problem with incomplete boundary spectral data, Comm. Partial Differential Equations, 23, 55
Katchalov, 2001, Inverse Boundary Spectral Problems, vol. 123
Katchalov, 2004, Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Problems, 20, 419, 10.1088/0266-5611/20/2/007
Kawashita, 2000, Harmonic moments and an inverse problem for the heat equation, SIAM J. Math. Anal., 32, 522, 10.1137/S0036141099353035
Krupchyk, 2008, Inverse spectral problems on a closed manifold, J. Math. Pures Appl., 90, 42, 10.1016/j.matpur.2008.02.009
Kurylev, 1992, Admissible groups of transformations that preserve the boundary spectral data in multidimensional inverse problems, Dokl. Akad. Nauk, 327, 322
Kurylev, 1995, An inverse boundary problem for the Schrödinger operator with magnetic field, J. Math. Phys., 36, 2761, 10.1063/1.531064
Kurylev, 1997, Multidimensional Gel'fand inverse problem and boundary distance map, 1
Kurylev, 2000, Gelf'and inverse problem for a quadratic operator pencil, J. Funct. Anal., 176, 247, 10.1006/jfan.2000.3615
Kurylev, 2003, Reconstruction of manifold from electromagnetic boundary measurements, vol. 333, 147
Kurylev, 2004, Focusing waves in electromagnetic inverse problems, vol. 348, 11
Kurylev, 2006, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems, J. Math. Pures Appl., 86, 237, 10.1016/j.matpur.2006.01.008
Lasiecka, 2000
Lassas, 2001, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. Ecole Norm. Sup., 34, 771, 10.1016/S0012-9593(01)01076-X
McKean, 1967, Curvature and the eigenvalues of the Laplacian, J. Differential Geom., 1, 43, 10.4310/jdg/1214427880
Melrose, 1993
Müller, 1996, On the L2-index of Dirac operators on manifolds with corners of codimension two, I, J. Differential Geom., 44, 97, 10.4310/jdg/1214458741
Nachman, 1988, Reconstructions from boundary measurements, Ann. of Math., 128, 531, 10.2307/1971435
Nachman, 1988, An n-dimensional Borg–Levinson theorem, Comm. Math. Phys., 115, 595, 10.1007/BF01224129
Nakamura, 2000, Uniqueness for an inverse boundary value problem for Dirac operators, Comm. Partial Differential Equations, 25, 1327
Nogami, 1986, Dirac equation with a separable potential, Phys. Rev. C, 34, 1855, 10.1103/PhysRevC.34.1855
Pestov, 2005, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math., 161, 1093, 10.4007/annals.2005.161.1093
Russell, 1978, Controllability and stabilizability theory for linear partial differential equations, SIAM Rev., 20, 639, 10.1137/1020095
M. Salo, L. Tzou, Carleman estimates and inverse problems for Dirac operators, Math. Ann., in press
Seeley, 1964, Extension of C∞-functions defined in a half space, Proc. Amer. Math. Soc., 15, 625
Sylvester, 1987, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125, 153, 10.2307/1971291
Tataru, 1995, Unique continuation for solutions to PDEs, between Hörmander's theorem and Holmgren's theorem, Comm. Partial Differential Equations, 20, 855, 10.1080/03605309508821117
Tataru, 1999, Unique continuation for operators with partially analytic coefficients, J. Math. Pures Appl., 78, 505, 10.1016/S0021-7824(99)00016-1
Taylor, 1996
Tsuchida, 1998, An inverse boundary value problem for Dirac operators with small potentials, Kyushu J. Math., 52, 361, 10.2206/kyushujm.52.361
Weder, 2002, The Aharonov–Bohm effect and time-dependent inverse scattering theory, Inverse Problems, 18, 1041, 10.1088/0266-5611/18/4/307
Wilcox, 1964, The domain of dependence inequality for symmetric hyperbolic systems, Bull. Amer. Math. Soc., 70, 149, 10.1090/S0002-9904-1964-11056-9