Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys

Nature Materials - Tập 4 Số 6 - Trang 450-454 - 2005
Thorsten Krenke1, E. Duman2, Mehmet Acet2, E. F. Wassermann2, Xavier Moya3, Lluı́s Mañosa3, Antoni Planes3
1Fachbereich Physik, Experimentalphysik, Universität Duisburg-Essen, D-47048 Duisburg, Germany
2Fachbereich Physik, Experimentalphysik, Universität Duisburg-Essen, Duisburg, Germany
3Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Diagonal 647, Barcelona, Spain.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997).

Pecharsky, V. K. & Gschneidner K. A. Jr Gd5(SixGe1−x)4: an extremum material. Adv. Mater. 13, 683–686 (2001).

Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

Tegus, O. et al. Magnetic phase transitions and magnetocaloric effects. Physica B 319, 174–192 (2002).

Zhang, Y. Q. & Zhang, Z. D. Giant magnetoresistance and magnetocaloric effects of the Mn1.82 V0.18Sb compound. J. Alloys Comp. 365, 35–38 (2004).

Provenzano, V., Shapiro, A. J. & Shull R. D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Si2Ge2 by addition of iron. Nature 429, 853–857 (2004).

Pecharsky, V. K. & Gschneidner, K. A. Jr Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K. Appl. Phys. Lett. 70, 3299–3301 (1997).

Nikitin, S. A. et al. The magnetocaloric effect in Fe49Rh51 compound. Phys. Lett. A 148, 363–366 (1990).

Pareti, L., Solzi, M., Albertini, F. & Paoluzi, A. Giant entropy change at the co-occurrence of structural and magnetic transitions in the Ni2.19Mn0.81Ga Heusler alloy. Eur. Phys. J. B 32, 303–307 (2003).

Marcos, J. et al. Magnetic field induced entropy change and magnetoelasticity in Ni–Mn–Ga alloys. Phys. Rev. B 66, 224413 (2002).

Marcos, J. et al. Multiscale origin of the magnetocaloric effect in Ni–Mn–Ga shape-memory alloys. Phys. Rev. B 68, 094401 (2003).

Hu, F., Shen, B. & Sun, J. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Appl. Phys. Lett. 76, 3460–3462 (2000).

Krenke, T. et al. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys. Rev. B (in the press).

Duman, E., Acet, M., Elerman, Y., Elmali, A. & Wassermann, E. F. Magnetic interactions in Pr1−xTbxMn2Ge2 . J. Magn. Magn. Mater. 238, 11–21 (2002).

Tishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (Institute of Physics, Bristol, 2003).

Sasioglu, E., Sandratskii, L. M. & Bruno, P. First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X=Ga, Sn, Sb). Phys. Rev. B 70, 024427 (2004).

Joenk, R. J. Adiabatic magnetisation of antiferromagnets. J. Appl. Phys. 34, 1097–1098 (1963).