Inverse design of dynamically tunable phase-change material based metamaterial absorber induced structural color
Tài liệu tham khảo
Wang, 2018, Stepwise-nanocavity-assisted transmissive color filter array microprints, Research, 2018, 1, 10.1155/2018/8109054
Sun, 2017, All-dielectric full-color printing with TiO 2 metasurfaces, ACS Nano, 11, 4445, 10.1021/acsnano.7b00415
Wei, 2019, Multi-color modulation based on bump structures of phase-change material for color printing, Opt. Mater., 98, 10.1016/j.optmat.2019.109445
Shao, 2018, Advanced plasmonic materials for dynamic color display, Adv. Mater., 30, 10.1002/adma.201704338
Ríos, 2016, Color depth modulation and resolution in phase-change material nanodisplays, Adv. Mater., 28, 4720, 10.1002/adma.201506238
Luo, 2020, Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption, Adv. Opt. Mater., 8, 10.1002/adom.201902020
Lee, 2014, Colored ultrathin hybrid photovoltaics with high quantum efficiency, Light.: Sci. Appl., 3, 10.1038/lsa.2014.96
He, 2020, Dynamically tunable transmissive color filters using ultra-thin phase change materials, Opt. Express, 28, 39841, 10.1364/OE.411874
O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A.I. Khan, K.M. Neilson, C. Teichrib, T. Brown, E. Pop, D.W. Hewak, M. Wuttig, A. Alu, O.L. Muskens, A. Adibi, Enhanced Meta-Displays Using Advanced Phase-Change Materials(2021). arXiv:2107.12159.
Carrillo, 2019, A nonvolatile phase-change metamaterial color display, Adv. Opt. Mater., 7, 10.1002/adom.201801782
Shportko, 2008, Resonant bonding in crystalline phase-change materials, Nat. Mater., 7, 653, 10.1038/nmat2226
Rudé, 2016, Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials, Adv. Opt. Mater., 4, 1060, 10.1002/adom.201600079
Hosseini, 2014, An optoelectronic framework enabled by low-dimensional phase-change films, Nature, 511, 206, 10.1038/nature13487
Kats, 2013, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material, Opt. Lett., 38, 368, 10.1364/OL.38.000368
Russo, 2007, Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation, IEEE Trans. Electron Devices, 54, 2769, 10.1109/TED.2007.904976
Sebastian, 2014, Crystal growth within a phase change memory cell, Nat. Commun., 5, 4314, 10.1038/ncomms5314
Kristensen, 2017, Plasmonic colour generation, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.88
Dong, 2017, Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space, Nano Lett., 17, 7620, 10.1021/acs.nanolett.7b03613
Ma, 2021, Deep learning for the design of photonic structures, Nat. Photonics, 15, 77, 10.1038/s41566-020-0685-y
Harper, 2020, Inverse design of broadband highly reflective metasurfaces using neural networks, Phys. Rev. B, 101, 10.1103/PhysRevB.101.195104
An, 2022, Deep neural network enabled active metasurface embedded design, Nanophotonics, 10.1515/nanoph-2022-0152
Ma, 2021, Prediction and inverse design of structural colors of nanoparticle systems via deep neural network, Nanomaterials, 11, 3339, 10.3390/nano11123339
An, 2019, Approach for objective-driven all-dielectric metasurface design, ACS Photonics, 6, 3196, 10.1021/acsphotonics.9b00966
Hemmatyar, 2019, Full color generation with Fano-type resonant HfO 2 nanopillars designed by a deep-learning approach, Nanoscale, 11, 21266, 10.1039/C9NR07408B
Khatib, 2022, Learning the physics of all-dielectric metamaterials with deep lorentz neural networks, Adv. Opt. Mater., 10, 10.1002/adom.202200097
Gahlmann, 2022, Deep neural networks for the prediction of the optical properties and the free-form inverse design of metamaterials, Phys. Rev. B, 106, 10.1103/PhysRevB.106.085408
Gao, 2019, A bidirectional deep neural network for accurate silicon color design, Adv. Mater., 31
Dai, 2021, Accurate inverse design of Fabry-Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network, Photonics Res., 9, B236, 10.1364/PRJ.415141
Roberts, 2021, A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color, Appl. Phys. Lett., 119, 10.1063/5.0055733
Huang, 2019, The inverse design of structural color using machine learning, Nanoscale, 11, 21748, 10.1039/C9NR06127D
Palik, 1985
Rumpf, 2011, Improved formulation of scattering matrices for semi-analytical methods that is consistent convention, Prog. Electromagn. Res. B, 35, 241, 10.2528/PIERB11083107
Moharam, 1995, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A, 12, 1068, 10.1364/JOSAA.12.001068
Habekost, 2013, Which color differencing equation should be used, Int. Circ. Graph. Educ. Res., 6, 20
Chen, 2015, Tunable near-infrared plasmonic perfect absorber based on phase-change materials, Photonics Res., 3, 54, 10.1364/PRJ.3.000054
Voshchinnikov, 2007, Effective medium theories for irregular fluffy structures: aggregation of small particles, Appl. Opt., 46, 4065, 10.1364/AO.46.004065
Prakash S, 2022, Reconfigurable and spectrally switchable perfect absorber based on a phase-change material, Appl. Opt., 61, 2888, 10.1364/AO.451285
Wang, 2017, Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- ϵ″ metals, Appl. Phys. Lett., 110, 10.1063/1.4977860
F. W. Billmeyer, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp.Color Research & Application 8
(4) (1983)262-263.10.1002/col.5080080421.
Mokrzycki, 2011, Color difference delta e – a survey, Mach. Graph. Vis., 20, 383
Dai, 2022, Inverse design of structural color: finding multiple solutions via conditional generative adversarial networks, Nanophotonics, 11, 3057, 10.1515/nanoph-2022-0095