Inverse design of dynamically tunable phase-change material based metamaterial absorber induced structural color

Ram Prakash S1, Rajesh Kumar1, Anirban Mitra2
1Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
2Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India

Tài liệu tham khảo

Wang, 2018, Stepwise-nanocavity-assisted transmissive color filter array microprints, Research, 2018, 1, 10.1155/2018/8109054 Sun, 2017, All-dielectric full-color printing with TiO 2 metasurfaces, ACS Nano, 11, 4445, 10.1021/acsnano.7b00415 Wei, 2019, Multi-color modulation based on bump structures of phase-change material for color printing, Opt. Mater., 98, 10.1016/j.optmat.2019.109445 Shao, 2018, Advanced plasmonic materials for dynamic color display, Adv. Mater., 30, 10.1002/adma.201704338 Ríos, 2016, Color depth modulation and resolution in phase-change material nanodisplays, Adv. Mater., 28, 4720, 10.1002/adma.201506238 Luo, 2020, Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption, Adv. Opt. Mater., 8, 10.1002/adom.201902020 Lee, 2014, Colored ultrathin hybrid photovoltaics with high quantum efficiency, Light.: Sci. Appl., 3, 10.1038/lsa.2014.96 He, 2020, Dynamically tunable transmissive color filters using ultra-thin phase change materials, Opt. Express, 28, 39841, 10.1364/OE.411874 O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis, S. Lepeshov, A. Krasnok, A.I. Khan, K.M. Neilson, C. Teichrib, T. Brown, E. Pop, D.W. Hewak, M. Wuttig, A. Alu, O.L. Muskens, A. Adibi, Enhanced Meta-Displays Using Advanced Phase-Change Materials(2021). arXiv:2107.12159. Carrillo, 2019, A nonvolatile phase-change metamaterial color display, Adv. Opt. Mater., 7, 10.1002/adom.201801782 Shportko, 2008, Resonant bonding in crystalline phase-change materials, Nat. Mater., 7, 653, 10.1038/nmat2226 Rudé, 2016, Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials, Adv. Opt. Mater., 4, 1060, 10.1002/adom.201600079 Hosseini, 2014, An optoelectronic framework enabled by low-dimensional phase-change films, Nature, 511, 206, 10.1038/nature13487 Kats, 2013, Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material, Opt. Lett., 38, 368, 10.1364/OL.38.000368 Russo, 2007, Analytical modeling of chalcogenide crystallization for PCM data-retention extrapolation, IEEE Trans. Electron Devices, 54, 2769, 10.1109/TED.2007.904976 Sebastian, 2014, Crystal growth within a phase change memory cell, Nat. Commun., 5, 4314, 10.1038/ncomms5314 Kristensen, 2017, Plasmonic colour generation, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.88 Dong, 2017, Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space, Nano Lett., 17, 7620, 10.1021/acs.nanolett.7b03613 Ma, 2021, Deep learning for the design of photonic structures, Nat. Photonics, 15, 77, 10.1038/s41566-020-0685-y Harper, 2020, Inverse design of broadband highly reflective metasurfaces using neural networks, Phys. Rev. B, 101, 10.1103/PhysRevB.101.195104 An, 2022, Deep neural network enabled active metasurface embedded design, Nanophotonics, 10.1515/nanoph-2022-0152 Ma, 2021, Prediction and inverse design of structural colors of nanoparticle systems via deep neural network, Nanomaterials, 11, 3339, 10.3390/nano11123339 An, 2019, Approach for objective-driven all-dielectric metasurface design, ACS Photonics, 6, 3196, 10.1021/acsphotonics.9b00966 Hemmatyar, 2019, Full color generation with Fano-type resonant HfO 2 nanopillars designed by a deep-learning approach, Nanoscale, 11, 21266, 10.1039/C9NR07408B Khatib, 2022, Learning the physics of all-dielectric metamaterials with deep lorentz neural networks, Adv. Opt. Mater., 10, 10.1002/adom.202200097 Gahlmann, 2022, Deep neural networks for the prediction of the optical properties and the free-form inverse design of metamaterials, Phys. Rev. B, 106, 10.1103/PhysRevB.106.085408 Gao, 2019, A bidirectional deep neural network for accurate silicon color design, Adv. Mater., 31 Dai, 2021, Accurate inverse design of Fabry-Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network, Photonics Res., 9, B236, 10.1364/PRJ.415141 Roberts, 2021, A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color, Appl. Phys. Lett., 119, 10.1063/5.0055733 Huang, 2019, The inverse design of structural color using machine learning, Nanoscale, 11, 21748, 10.1039/C9NR06127D Palik, 1985 Rumpf, 2011, Improved formulation of scattering matrices for semi-analytical methods that is consistent convention, Prog. Electromagn. Res. B, 35, 241, 10.2528/PIERB11083107 Moharam, 1995, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, J. Opt. Soc. Am. A, 12, 1068, 10.1364/JOSAA.12.001068 Habekost, 2013, Which color differencing equation should be used, Int. Circ. Graph. Educ. Res., 6, 20 Chen, 2015, Tunable near-infrared plasmonic perfect absorber based on phase-change materials, Photonics Res., 3, 54, 10.1364/PRJ.3.000054 Voshchinnikov, 2007, Effective medium theories for irregular fluffy structures: aggregation of small particles, Appl. Opt., 46, 4065, 10.1364/AO.46.004065 Prakash S, 2022, Reconfigurable and spectrally switchable perfect absorber based on a phase-change material, Appl. Opt., 61, 2888, 10.1364/AO.451285 Wang, 2017, Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- ϵ″ metals, Appl. Phys. Lett., 110, 10.1063/1.4977860 F. W. Billmeyer, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp.Color Research & Application 8 (4) (1983)262-263.10.1002/col.5080080421. Mokrzycki, 2011, Color difference delta e – a survey, Mach. Graph. Vis., 20, 383 Dai, 2022, Inverse design of structural color: finding multiple solutions via conditional generative adversarial networks, Nanophotonics, 11, 3057, 10.1515/nanoph-2022-0095