Inverse Boundary Value Problem for a Fractional Differential Equations of Mixed Type with Integral Redefinition Conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. Xu, Y. Yu, Y. Q. Chen, and Z. Lu, ‘‘Forecast analysis of the epidemic trend of COVID-19 in the United States by a generalized fractional-order SEIR model,’’ arXiv: 2004.12541v1 (2020).
Handbook of Fractional Calculus with Applications, Ed. by J. A. Tenreiro Machado (Walter de Gruyter, Berlin, Boston, 2019).
D. Kumar and D. Baleanu, ‘‘Fractional calculus and its applications in physics,’’ Front. Phys. 7 (6) (2019).
M.-H. Kim, G.-Ch. Ri, and O. Hyong-Chol, ‘‘Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives,’’ Fract. Calc. Appl. Anal. 17, 79–95 (2014).
S. Patnaik, J. P. Hollkamp, and F. Semperlotti, ‘‘Applications of variable-order fractional operators: A review,’’ Proc. R. Soc. London, Ser. A 476, 20190498 (2020).
R. K. Saxena, R. Garra, and E. Orsingher, ‘‘Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives,’’ Integr. Transforms Spec. Funct. 6 (2015).
H. Sun, A. Chang, Y. Zhang, and W. Chen, ‘‘A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications,’’ Fract. Calculus Appl. Anal. 22, 27–59 (2019).
S. A. Malik and S. Aziz, ‘‘An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions,’’ Comput. Math. Appl. 73 (12) (2017).
S. Aziz and S. A. Malik, ‘‘Identification of an unknown source term for a time fractional fourth-order parabolic equation,’’ Electron. J. Differ. Equat. 2016 (293), 1–20 (2016).
K. B. Sabitov and S. N. Sidorov, ‘‘On a nonlocal problem for a degenerating parabolic-hyperbolic equation,’’ Differ. Equat. 50, 352–361 (2014).
K. B. Sabitov, On the Theory of Mixed Type Equations (Fizmatlit, Moscow, 2014) [in Russian].
T. K. Yuldashev, ‘‘Solvability of a boundary value problem for a differential equation of the Boussinesq type,’’ Differ. Equat. 54, 1384–1393 (2018).
T. K. Yuldashev, ‘‘A coefficient determination in nonlocal problem for Boussinesq type integro-differential equation with degenerate kernel,’’ Vladikavk. Math. J. 21 (2), 67–84 (2019).
T. K. Yuldashev, ‘‘On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument,’’ Lobachevskii J. Math. 41 (1), 111–123 (2020).
T. K. Yuldashev, ‘‘Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential equations,’’ Axioms 9, (2), 45-1–21 (2020).
O. S. Zikirov, ‘‘A non-local boundary value problem for third-order linear partial differential equation of composite type,’’ Math. Model. Anal. 14, 407–421 (2009).
A. S. Berdyshev and B. J. Kadirkulov, ‘‘On a nonlocal problem for a fourth-order parabolic equation with the fractional Dzhrbashyan–Nersesyan operator,’’ Differ. Equat. 52, 122–127 (2016).
A. S. Berdyshev, A. Cabada, and B. J. Kadirkulov, ‘‘The Samarskii–Ionkin type problem for fourth order parabolic equation with fractional differential operator,’’ Comput. Math. Appl. 62, 3884–3893 (2011).
S. Kerbal, B. J. Kadirkulov, and M. Kirane, ‘‘Direct and inverse problems for a Samarskii–Ionkin type problem for a two dimensional fractional parabolic equation,’’ Progr. Fract. Differ. Appl. 4 (3), 1–14 (2018).