Invariant Measures for Monotone SPDEs with Multiplicative Noise Term

Applied Mathematics & Optimization - Tập 68 - Trang 275-287 - 2013
Abdelhadi Es-Sarhir1, Michael Scheutzow2, Jonas M. Tölle2, Onno van Gaans3
1Département de Mathématiques, Faculté des Sciences, Université Ibn Zohr, Dakhla, Morocco
2Fakultät II, Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
3Mathematisch Instituut, Universiteit Leiden, Leiden, The Netherlands

Tóm tắt

We study diffusion processes corresponding to infinite dimensional semilinear stochastic differential equations with local Lipschitz drift term and an arbitrary Lipschitz diffusion coefficient. We prove tightness and the Feller property of the solution to show existence of an invariant measure. As an application we discuss stochastic reaction diffusion equations.

Tài liệu tham khảo

Barbu, V., Da Prato, G.: Ergodicity for nonlinear stochastic equations in variational formulation. Appl. Math. Optim. 53(2), 121–139 (2006) Cerrai, S.: Smoothing properties of transition semigroups relative to SDEs with values in Banach spaces. Probab. Theory Relat. Fields 113, 85–114 (1999) Cerrai, S.: Second order PDE’s in finite and infinite dimensions. A probabilistic approach. In: Lectures Notes in Mathematics, vol. 1762. Springer, Berlin (2001) Cerrai, S.: Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Relat. Fields 125, 271–304 (2003) Cerrai, S.: Stabilization by noise for a class of stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 133, 190–214 (2005) Dal Maso, G.: An introduction to Γ-convergence. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkäuser, Boston (1993) Da Prato, G., Gątarek, D., Zabczyk, J.: Invariant measures for semilinear stochastic equations. Stoch. Anal. Appl. 10(4), 387–408 (1992) Da Prato, G., Zabczyk, J.: A note on stochastic convolution. Stoch. Anal. Appl. 10(2), 143–153 (1992) Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and Its Applications, vol. 45. Cambridge University Press, Cambridge (1992) Da Prato, G., Zabczyk, J.: Ergodicity for infinite dimensional systems. In: London Mathematical Society Lecture Notes, vol. 229. Cambridge University Press, Cambridge (1996) Es-Sarhir, A., van Gaans, O., Scheutzow, M.: Invariant measures for stochastic delay equations with superlinear drift term. Differ. Integral Equ. 23(1–2), 189–200 (2010) Gątarek, D.: A note on nonlinear stochastic equations in Hilbert spaces. Stat. Probab. Lett. 17, 387–394 (1993) Gątarek, D., Goldys, B.: On weak solutions of stochastic equations in Hilbert spaces. Stoch. Stoch. Rep. 46, 41–51 (1994) Gątarek, D., Goldys, B.: On invariant measures for diffusions on Banach spaces. Potential Anal. 7, 539–553 (1997) Goldys, B., Maslowski, B.: Uniform exponential ergodicity of stochastic dissipative systems. Czechoslov. Math. J. 126(51), 745–762 (2001) Manthey, R., Zausinger, T.: Stochastic evolution equations in \(L^{2\nu}_{\rho}\). Stoch. Stoch. Rep. 66(2), 37–85 (1999) Seidler, J., Subukawa, T.: Exponential integrability of stochastic convolutions. J. Lond. Math. Soc. 67(2), 245–258 (2003)