Invariance principles for non-isotropic long memory random fields

Frédéric Lavancier1
1Université de NANTES, Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, UFR Sciences et Techniques

Tóm tắt

Từ khóa


Tài liệu tham khảo

Billingsley P (1968) Convergence of probability measures. Wiley, New York

Breuer P, Major P (1983) Central limit theorems for non-linear functionals of gaussian fields. J Mulivar Analy 13:425–441

Dobrushin RL, Major P (1979) Non central limit theorems for non-linear functionals of gaussian fields. Z Warsch verw Geb 50:27–52

Doukhan P, Lang G, Surgailis D (2002) Asymptotics of weighted empirical processes of linear fields with long-rang dependence. Ann Inst Henri Poincaré 6:879–896

Gikhman II, Skorokhod AV (1965) Introduction to the theory of random processes. W. B. Saunders, Philadelphia

Grinblatt L (1976) A limit theorem for measurable random processes and its applications. Proc Am Math Soc 61(2):371–376

Lang G, Soulier P (2000) Convergence de mesures spectrales aléatoires et applications à des principes d’invariance. Stat Inf Stoch Proc 3:41–51

Lavancier F (2003a) Principes d’invariance pour les champs aléatoires fortement dépendants, partie 1: théorème de convergence de champs spectraux. Technical Report 60, XII, IRMA, Lille. availaible at http://math.univ-lille1.fr/lavancier

Lavancier F (2003b) Principes d’invariance pour les champs aléatoires fortement dépendants, partie 2: application aux sommes partielles de champs aléatoires à longe mémoire. Technical Report 61, V, IRMA, Lille. availaible at http://math.univ-lille1.fr/lavancier

Viano M-C, Deniau C, Oppenheim G (1995) Long-range dependence and mixing for discrete time fractional processes. J Time Ser Anal 16(3):323–338

Wainger S (1965) Special trigonometric series in k-dimensions. Number 59. AMS, Providence. RI