Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy

Sustainable Production and Consumption - Tập 8 - Trang 78-92 - 2016
Serkan Gümüş1,2, Murat Küçükvar3, Ömer Tatari2
1Department of Basic Sciences, Turkish Military Academy, Ankara, Turkey
2Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, United States
3Department of Industrial Engineering, Istanbul Sehir University, Uskudar, 34662, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Afgan, 2004, Sustainability assessment of hydrogen energy systems, Int. J. Hydrogen Energy, 29, 1327, 10.1016/j.ijhydene.2004.01.005

Anadon, L.D., Bunn, M.G., Chan, M., Jones, C.A., Kempener, R., Chan, G.A., Narayanamurti, V., 2011. Transforming US Energy Innovation.

Anadon, L.D., Bunn, M., Gallagher, K.S., Jones, C., 2009. Tackling US energy challenges and opportunities: Preliminary policy recommendations for enhancing energy innovation in the United States. Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University.

Ardente, 2004, FALCADE: fuzzy software for the energy and environmental balances of products, Ecol. Modell., 176, 359, 10.1016/j.ecolmodel.2003.11.014

Ardente, 2008, Energy performances and life cycle assessment of an Italian wind farm, Renewable Sustainable Energy Rev., 12, 200, 10.1016/j.rser.2006.05.013

Atanassov, 1986, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87, 10.1016/S0165-0114(86)80034-3

Atanassov, 2005, Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making, Int. J. Syst. Sci., 36, 859, 10.1080/00207720500382365

Atilgan, 2015, Life cycle environmental impacts of electricity from fossil fuels in Turkey, J. Cleaner Prod., 106, 555, 10.1016/j.jclepro.2014.07.046

Azapagic, 2016, Towards sustainable production and consumption: A novel decision-support framework integrating economic, environmental and social sustainability (DESIRES), Comput. Chem. Eng., 91, 93, 10.1016/j.compchemeng.2016.03.017

Boran, 2012, The evaluation of renewable energy technologies for electricity generation in Turkey using intuitionistic fuzzy TOPSIS, Energy Sources Part B, 7, 81, 10.1080/15567240903047483

Boran, 2009, Multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Syst. Appl., 36, 11363, 10.1016/j.eswa.2009.03.039

Cavallaro, 2005, Multicriteria approach to evaluate wind energy plants on an Italian island, Energy Policy, 33, 235, 10.1016/S0301-4215(03)00228-3

Cellura, 2011, The energy and environmental impacts of Italian households consumptions: an input–output approach, Renewable Sustainable Energy Rev., 15, 3897, 10.1016/j.rser.2011.07.025

Cellura, 2012, Application of the structural decomposition analysis to assess the indirect energy consumption and air emission changes related to Italian households consumption, Renewable Sustainable Energy Rev., 16, 1135, 10.1016/j.rser.2011.11.016

Chatzimouratidis, 2008, Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process, Energy Policy, 36, 1074, 10.1016/j.enpol.2007.11.028

Chen, 2000, Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1, 10.1016/S0165-0114(97)00377-1

Chen, 2004, Combining grey relation and TOPSIS concepts for selecting an expatriate host country, Math. Comput. Modelling, 40, 1473, 10.1016/j.mcm.2005.01.006

De Luca, 1972, Definition of non-probabilistic entropy in the setting of fuzzy sets theory, Inf. Control, 20, 301, 10.1016/S0019-9958(72)90199-4

Dimitriou, 2015, Carbon dioxide utilisation for production of transport fuels: process and economic analysis, Energy Environ. Sci., 8, 1775, 10.1039/C4EE04117H

Doukas, 2007, Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables, European J. Oper. Res., 182, 844, 10.1016/j.ejor.2006.08.037

Egilmez, 2015, Environmental sustainability benchmarking of the US and Canada metropoles: An expert judgment-based multi-criteria decision making approach, Cities, 42, 31, 10.1016/j.cities.2014.08.006

Egilmez, 2016, A fuzzy data envelopment analysis framework for dealing with uncertainty impacts of input–output life cycle assessment models on eco-efficiency assessment, J. Cleaner Prod., 10.1016/j.jclepro.2016.03.111

Egilmez, 2013, Sustainability assessment of US manufacturing sectors: an economic input output-based frontier approach, J. Cleaner Prod., 53, 91, 10.1016/j.jclepro.2013.03.037

Egilmez, 2014, Supply chain sustainability assessment of the US food manufacturing sectors: A life cycle-based frontier approach, Resour. Conserv. Recy., 82, 8, 10.1016/j.resconrec.2013.10.008

Elkington, J., 1997. Cannibals with forks. The triple bottom line of 21st century.

Elsam, 2004, Wind Vestas engineering, life cycle assessment of offshore and onshore sited wind farms, Engineering

Evans, 2009, Assessment of sustainability indicators for renewable energy technologies, Renewable Sustainable Energy Rev., 13, 1082, 10.1016/j.rser.2008.03.008

Foran, B., Lenzen, M., Dey, C., 2005a. Balancing act a triple bottom line analysis of the Australian economy volume 1. In: Csiro (Ed.), Balancing Act 358. CSIRO, p. 277.

Foran, 2005, Integrating sustainable chain management with triple bottom line accounting, Ecol. Econ., 52, 143, 10.1016/j.ecolecon.2004.06.024

Greening, 2006, Design of coordinated energy and environmental policies: use of multi- criteria decision-making, Energy Policy, 32, 721, 10.1016/j.enpol.2003.08.017

Gujba, 2010, Environmental and economic appraisal of power generation capacity expansion plan in Nigeria, Energy Policy, 38, 5636, 10.1016/j.enpol.2010.05.011

Heo, 2010, Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP, Renewable Sustainable Energy Rev., 14, 2214, 10.1016/j.rser.2010.01.020

Hwang, 1981

Jacobson, 2011, Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials, Energy Policy, 39, 1154, 10.1016/j.enpol.2010.11.040

Jahanshahloo, 2006, An algorithmic method to extend TOPSIS for decision-making problems with interval data, Appl. Math. Comput., 175, 1375, 10.1016/j.amc.2005.08.048

Jahanshahloo, 2006, Extension of the TOPSIS method for decision-making problems with fuzzy data, Appl. Math. Comput., 181, 1544, 10.1016/j.amc.2006.02.057

Jeswani, 2010, Options for broadening and deepening the LCA approaches, J. Cleaner Prod., 18, 120, 10.1016/j.jclepro.2009.09.023

Jungbluth, 2014, Life cycle assessment for emerging technologies: Case studies for photovoltaic and wind power, Energy Supply, 1

Kahraman, 2010, A fuzzy multi-criteria methodology for selection among energy alternatives, Expert Syst. Appl., 37, 6270, 10.1016/j.eswa.2010.02.095

Kahraman, 2009, Comparative analysis for multi attribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process, Energy, 34, 1603, 10.1016/j.energy.2009.07.008

Kaya, 2010, Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul, Energy, 35, 2517, 10.1016/j.energy.2010.02.051

Kaya, 2011, Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology, Expert Syst. Appl., 38, 6577, 10.1016/j.eswa.2010.11.081

Kloepffer, 2008, Life cycle sustainability assessment of products, Int. J. Life Cycle Assess., 13, 89, 10.1065/lca2008.02.376

Kouloumpis, 2015, Decarbonising electricity supply: Is climate change mitigation going to be carried out at the expense of other environmental impacts?, Sustainable Prod. Consumpt., 1, 1, 10.1016/j.spc.2015.04.001

Kucukvar, 2016, Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries, Appl. Energy, 10.1016/j.apenergy.2016.03.068

Kucukvar, 2015, A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing, Sustainable Prod. Consumpt., 1, 47, 10.1016/j.spc.2015.05.005

Kucukvar, 2014, Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method, Autom. Constr., 40, 33, 10.1016/j.autcon.2013.12.009

Kucukvar, 2014, Stochastic decision modeling for sustainable pavement designs, Int. J. Life Cycle Assess., 19, 1185, 10.1007/s11367-014-0723-4

Kucukvar, 2014, Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis, Waste Manag. Res., 32, 500, 10.1177/0734242X14536457

Kucukvar, 2015, Linking national food production to global supply chain impacts for the energy-climate challenge: the cases of the EU-27 and Turkey, J. Cleaner Prod., 108, 395, 10.1016/j.jclepro.2015.08.117

Kucukvar, 2011, A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy, Energy, 36, 6352, 10.1016/j.energy.2011.09.039

Kucukvar, 2013, Towards a triple bottom-line sustainability assessment of the US construction industry, Int. J. Life Cycle Assess., 18, 958, 10.1007/s11367-013-0545-9

Lai, 1994, TOPSIS for MODM, European J. Oper. Res., 76, 486, 10.1016/0377-2217(94)90282-8

Lee, 2009, Multi-criteria decision making on strategic selection of wind farms, Renew. Energy, 34, 120, 10.1016/j.renene.2008.04.013

Lenzen, 2000, Errors in conventional and input–output-based life-cycle inventories, J. Ind. Ecol., 4, 127, 10.1162/10881980052541981

Lenzen, 2008, Life cycle energy and greenhouse gas emissions of nuclear energy: A review, Energy Convers. Manage., 49, 2178, 10.1016/j.enconman.2008.01.033

Lenzen, 2002, Energy and CO2 life-cycle analyses of wind turbines—review and applications, Renew. Energy, 26, 339, 10.1016/S0960-1481(01)00145-8

Lenzen, 2004, Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment, Appl. Energy, 77, 119, 10.1016/S0306-2619(03)00105-3

Li, 2005, Multiattribute decision making models and methods using intuitionistic fuzzy sets, J. Comput. Syst. Sci., 70, 73, 10.1016/j.jcss.2004.06.002

Li, 2009, Fractional programming methodology for multi-attribute group decision-making using IFS, Appl. Soft Comput., 9, 219, 10.1016/j.asoc.2008.04.006

Lin, 2007, Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets, J. Comput. Syst. Sci., 73, 84, 10.1016/j.jcss.2006.03.004

Liu, 2007, Multi-criteria decision-making methods based on intuitionistic fuzzy sets, European J. Oper. Res., 179, 220, 10.1016/j.ejor.2006.04.009

Løken, 2007, Use of multicriteria decision analysis methods for energy planning problems, Renewable Sustainable Energy Rev., 11, 1584, 10.1016/j.rser.2005.11.005

Malik, 2015, Triple bottom line study of a lignocellulosic biofuel industry, GCB Bioenergy

Martinez, 2009, Life cycle assessment of a multi-megawatt wind turbine, Renew. Energy, 34, 667, 10.1016/j.renene.2008.05.020

Noori, 2015, Economic input–output based sustainability analysis of onshore and offshore wind energy systems, Int. J. Green Energy, 12, 939, 10.1080/15435075.2014.890103

Noori, 2015, A macro-level decision analysis of wind power as a solution for sustainable energy, Int. J. Sustain. Energy, 34, 629, 10.1080/14786451.2013.854796

Onat, N., 2015a. Integrated Sustainability Assessment Framework for the U.S. Transportation. Electronic Theses and Dissertations. Paper 1240 http://stars.library.ucf.edu/etd/1240.

Onat, N., 2015b. A Macro-Level Sustainability Assessment Framework for Optimal Distribution of Alternative Passenger Vehicles. Electronic Theses and Dissertations. Paper 1241. http://stars.library.ucf.edu/etd/1241.

Onat, 2014, Towards greening the US residential building stock: a system dynamics approach, Build. Environ., 78, 68, 10.1016/j.buildenv.2014.03.030

Onat, 2016, Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles, Int. J. Life Cycle Assess., 1

Onat, 2016, Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in US, J. Cleaner Prod., 112, 291, 10.1016/j.jclepro.2015.09.021

Onat, 2015, Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies, Sustainable Prod. Consumpt.

Onat, 2015, Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States, Appl. Energy, 150, 36, 10.1016/j.apenergy.2015.04.001

Onat, 2014, Scope-based carbon footprint analysis of US residential and commercial buildings: An input–output hybrid life cycle assessment approach, Build. Environ., 72, 53, 10.1016/j.buildenv.2013.10.009

Onat, 2014, Integrating triple bottom line input–output analysis into life cycle sustainability assessment framework: the case for US buildings, Int. J. Life Cycle Assess., 19, 1488, 10.1007/s11367-014-0753-y

Onat, 2014, Towards life cycle sustainability assessment of alternative passenger vehicles, Sustainability, 6, 9305, 10.3390/su6129305

Park, 2015, A novel life cycle-based principal component analysis framework for eco-efficiency analysis: case of the United States manufacturing and transportation Nexus, J. Cleaner Prod., 92, 327, 10.1016/j.jclepro.2014.12.057

Pehnt, 2008, Consequential environmental system analysis of expected offshore wind electricity production in Germany, Energy, 33, 747, 10.1016/j.energy.2008.01.007

Pohekar, 2004, Application of multi-criteria decision making to sustainable energy planning—a review, Renewable Sustainable Energy Rev., 8, 365, 10.1016/j.rser.2003.12.007

San Cristóbal, 2011, Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method, Renew. Energy, 36, 498, 10.1016/j.renene.2010.07.031

Santoyo-Castelazo, 2014, Sustainability assessment of energy systems: integrating environmental, economic and social aspects, J. Cleaner Prod., 80, 119, 10.1016/j.jclepro.2014.05.061

Santoyo-Castelazo, 2011, Life cycle assessment of electricity generation in Mexico, Energy, 36, 1488, 10.1016/j.energy.2011.01.018

Shannon, 1948, The mathematical theory of communication, Bell Syst. Tech. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x

Slattery, 2011, State and local economic impacts from wind energy projects: Texas case study, Energy Policy, 39, 7930, 10.1016/j.enpol.2011.09.047

Stamford, 2012, Life cycle sustainability assessment of electricity options for the UK, Int. J. Energy Res., 36, 1263, 10.1002/er.2962

Su, 2011, An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making, Expert Syst. Appl., 38, 15286, 10.1016/j.eswa.2011.06.022

Szmidt, 2000, Distances between intuitionistic fuzzy sets, Fuzzy Sets and Systems, 114, 505, 10.1016/S0165-0114(98)00244-9

Szmidt, 2001, Entropy of intuitionistic fMulti-person multi-attribute decision uzzy sets, Fuzzy Sets and Systems, 118, 467, 10.1016/S0165-0114(98)00402-3

Talinli, 2010, Comparative analysis for energy production processes (EPPs): sustainable energy futures for Turkey, Energy Policy, 38, 4479, 10.1016/j.enpol.2010.03.081

UNEP. 21 Issues for the 21st Century: Result of the UNEP Foresight Process on Emerging Environmental Issues. In United Nations Environmental Program. Nairobi: UNEP 2012.

US Department of Energy, 2008. 20% Wind Energy by 2030.US Department of Energy. http://www.nrel.gov/docs/fy08osti/41869.pdf.

Vestas Wind Systems A/S, 2006. Life cycle assessment of offshore and onshore sited wind power plants based on Vestas V90-3.0 MW turbines.

Vlachos, 2007, Intuitionistic fuzzy information — Applications to pattern recognition, Pattern Recognit. Lett., 28, 197, 10.1016/j.patrec.2006.07.004

Wang, 2009, QoS-aware web services selection with intuitionistic fuzzy set under consumer’s vague perception, Expert Syst. Appl., 36, 4460, 10.1016/j.eswa.2008.05.007

Wang, 2009, Fuzzy hierarchical TOPSIS for supplier selection, Appl. Soft Comput., 9, 377, 10.1016/j.asoc.2008.04.014

Wang, 2009, Review on multi-criteria decision analysis aid in sustainable energy decision-making, Renewable Sustainable Energy Rev., 13, 2263, 10.1016/j.rser.2009.06.021

Wei, 2008, Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting, Knowl.-Based Syst., 21, 833, 10.1016/j.knosys.2008.03.038

Weinzettel, 2009, Life cycle assessment of a floating offshore wind turbine, Renew. Energy, 34, 742, 10.1016/j.renene.2008.04.004

Wiedmann, 2009, Unravelling the impacts of supply chains—a new triple-bottom-line accounting approach and software tool, 65

Wiedmann, 2009, Companies on the scale: Comparing and benchmarking the sustainability performance of businesses, J. Ind. Ecol., 13, 361, 10.1111/j.1530-9290.2009.00125.x

Wiedmann, 2011, Application of hybrid life cycle approaches to emerging energy technologies–the case of wind power in the UK, Environ. Sci. Technol., 45, 5900, 10.1021/es2007287

Xu, 2007, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15, 1179, 10.1109/TFUZZ.2006.890678

Xu, 2007, Multi-person multi-attribute decision making models under intuitionistic fuzzy environment, Fuzzy Optim. Decis. Mak., 6, 221, 10.1007/s10700-007-9009-7

Xu, 2009, Multi-period multi-attribute group decision-making under linguistic assessments, Int. J. Gen. Syst., 38, 823, 10.1080/03081070903257920

Xu, 2006, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35, 417, 10.1080/03081070600574353

Yang, 2007, Multiple-attribute decision making methods for plant layout design problem, Robot. Comput. Integr. Manuf., 23, 126, 10.1016/j.rcim.2005.12.002

Ye, 2010, Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets, Appl. Math. Model., 34, 3864, 10.1016/j.apm.2010.03.025

Zadeh, 1965, Fuzzy sets, Inf. Control, 8, 338, 10.1016/S0019-9958(65)90241-X

Zhang, 2013, Life cycle water use of energy production and its environmental impacts in China, Environ. Sci. Technol., 47, 14459, 10.1021/es402556x

Zomer, 2008, Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation, Agricult. Ecosys. Environ., 126, 67, 10.1016/j.agee.2008.01.014