Introduction to reversal fuzzy switch graph
Tài liệu tham khảo
Baczynski, 2017, Aggregation functions: theory and applications, part I, Fuzzy Sets Syst., 324, 1, 10.1016/j.fss.2017.05.012
Baczynski, 2017, Aggregation functions: theory and applications, part II, Fuzzy Sets Syst., 325, 1, 10.1016/j.fss.2017.05.013
Baczyński, 2008, 1
Barringer, 2005, 59
Beliakov, 2007
Callejas, 2013, Actions of automorphisms on some classes of fuzzy bi-implications, Mathware Soft Comput. Mag., 20, 94
Campos, 2020, Reversal fuzzy switch graphs, 137
Costa, 2018, Combining multiple algorithms in classifier ensembles using generalized mixture functions, Neurocomputing, 313, 402, 10.1016/j.neucom.2018.06.021
Cruz, 2018, On the characterizations of fuzzy implications satisfying i (x, i (y, z))= i (i (x, y), i (x, z)), Int. J. Approx. Reason., 93, 261, 10.1016/j.ijar.2017.11.004
Farias, 2016, Some properties of generalized mixture functions, 288
Fox, 2004
Gabbay, 2004, Reactive kripke semantics and arc accessibility
Gabbay, 2012, Global view on reactivity: switch graphs and their logics, Ann. Math. Artif. Intell., 66, 131, 10.1007/s10472-012-9316-8
Gabbay, 2008, Introducing reactive kripke semantics and arc accessibility, 292
Klement, 2013
Lee, 2004
Manisha, 2020, A fuzzy modal logic for fuzzy transition systems, Electron. Notes Theor. Comput. Sci., 348, 85, 10.1016/j.entcs.2020.02.006
Mesiar, 2008, 121
Mordeson, 2012
Pal, 2020
Pinheiro, 2018, A study of (t, n)-implications and its use to construct a new class of fuzzy subsethood measure, Int. J. Approx. Reason., 97, 1, 10.1016/j.ijar.2018.03.008
Santiago, 2021, Introducing fuzzy reactive graphs: a simple application on biology, Soft Comput., 25, 6759, 10.1007/s00500-020-05353-1
Santiago, 2019, On interval dynamic logic: introducing quasi-action lattices, Sci. Comput. Program., 175, 1, 10.1016/j.scico.2019.01.007