Introduction to magnetic refrigeration: magnetocaloric materials

Souheila Mellari1
1Department Genie Climatique, University of Constantine 1, Constantine 1, Algeria

Tóm tắt

This work presents a review of research work on the magnetic refrigerator, of which different research is presented. The principle of magnetic refrigeration at room temperature and its interests has been shown. The phase transitions, first-order and second-order, have been shown with the advantages and disadvantages of both. Indeed, the first-order materials benefit from high magnetic entropy and adiabatic temperature change. Their negative point consists in their great magnetic hysteresis. It is quite the opposite for second-order phase transition materials. An overview of existing materials and characterization of magnetocaloric effect have been explained.

Tài liệu tham khảo

Gilbert, W. (1893). On the loadstone and magnetic bodies and on the great magnet the Earth. Wiley. Warburg, E. (1881). Magnetische Untersuchungen. Annalen der Physik, 249(5), 141–164. Weiss, P., & Picard, A. (1917). Le phénomène magnétocalorique. Journal de Physique Théorique et Appliquée, 7(1), 103–109. https://doi.org/10.1051/jphystap:019170070010300 Giauque, W. F., & MacDougall, D. P. (1933). Attainment of temperatures below 1° absolute by demagnetization of Gd2 (SO4)3 ·8H2O. Physical Review, 43(9), 768–768. https://doi.org/10.1103/PhysRev.43.768 Darby, J., Hatton, J., Rollin, B. V., & Seymour, E. F. W. (1951). Experiments on the production of very low temperatures by two-stage demagnetization. Proceedings of the Physical Society. Section A, 64(10), 861–867. https://doi.org/10.1088/0370-1298/64/10/301/ Brown, G. V. (1976). Magnetic heat pumping near room temperature. Journal of Applied Physics, 47(8), 3673–3680. https://doi.org/10.1063/1.323176 Pecharsky, V. K., & Gschneidner Jr., K. A. (1997). Giant magnetocaloric effect in Gd5(Si2Ge2). Physical Review Letters, 78(23), 4494–4497. Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V. K., Gschneidner Jr., K. A., Osborne, M., & Anderson, I. (1998). Description and performance of a near-room temperature magnetic refrigerator. Advances in Cryogenic Engineering, 43, 1759–1766. https://doi.org/10.1007/978-1-4757-9047-4_222 Lionte, S. (2015). Characterization, study and modelling of the thermomagnetic behaviour of a magnetic refrigeration system with nonlinear materials and Curie point near room temperature (p. 195). Theses of University of Strasbourg https://www.researchgate.net/publication/298809659_Characterization_study_and_modelling_of_the_thermomagnetic_behaviour_of_a_magnetic_refrigeration_system_with_nonlinear_materials_and_Curie_point_near_room_temperature/ Herpin, André, Louis Néel. 1968. Théorie du magnétisme. Bibliothèque des sciences et techniques nucléaires, ISSN 1162-9681. Astronautics Cooperation of America (2002). New magnetic refrigerator. https://www.eurekalert.org/news-releases/773365/ Durand, É. (1968). Magnétostatique. Masson et Cie (Paris), (XIII) (p. 673) https://catalogue.bnf.fr/ark:/12148/cb329891698 Bertotti, G. (1998). Hysteresis in magnetism for physicists, materials scientists, and engineers (1st ed.p. 558). https://doi.org/10.1016/B978-0-12-093270-2.X5048-X eBook ISBN: 9780080534374. Kitanovski, A., & Egolf, P. W. (2006). Thermodynamics of magnetic refrigeration. International Journal of Refrigeration, 29(1), 3–21. https://doi.org/10.1016/j.ijrefrig.2005.04.007 Roudaut, J. (2011). Modélisation et conception de systèmes de réfrigération magnétique autour de la température ambiante (p. 229). Thesis, University of Grenoble HAL Id: tel-00652481. http://tel.archives-ouvertes.fr/tel-00652481/ Luchier, N. (2009). Technologies sub Kelvin (p. 30). Service des Basses Températures http://www-ecole-drtbt.neel.cnrs.fr/UserFiles/file/drtbt09/drtbt09_25_luchier.pdf Lebouc, A., Allab, F., Fournier, J. M., & Yonnet, J. P. (2005). Réfrigération Magnétique, Techniques de l’Ingénieur [Réf : RE28 v1]. Introduction à l'électromagnétisme des milieux matériels: Types de magnétisme, fr. https://fr.wikiversity.org/wiki/Introduction_%C3%A0_l%27%C3%A9lectromagn%C3%A9tisme_des_milieux_mat%C3%A9riels/Types_de_magn%C3%A9tisme Chennabasappa M. (2013). Etude du vieillissement de matériaux magnétocaloriques. Thesis. https://www.theses.fr/2013BOR14970 Fukamichi, K., Fujita, A., & Fujieda, S. (2006). Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides. Journal of Alloys and Compounds, 408–412(9), 307–312. https://doi.org/10.1016/j.jallcom.2005.04.022 Dieckman, J., Roth, K., & Brodrick, J. (2007). Magnetic refrigeration. ASHRAE Journal, 74–76 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.624.8379&rep=rep1&type=pdf Porcari, G., Fabbrici, C. S., Pernechele, C., Albertini, F., Buzzi, M., Paoluzi, A., Kamarad, J., Arnold, Z., & Solzi, M. (2012). Reverse magnetostructural transformation and adiabatic temperature change in Co-and In-substituted Ni-Mn-Ga alloys. Physical Review B, 85, 024414. Yibole, H., Guillou, F., Zhang, L., van Dijk, N. H., & Brück, E. (2014). Direct measurement of the magnetocaloric effect in MnFe(P,X)(X = As, Ge, Si) materials. Journal of Physics D: Applied Physics, 47(7), 075002. https://doi.org/10.1088/0022-3727/47/7/075002 Basso, V., Sasso, C. P., & Küpferling, M. (2010). A Peltier cells differential calorimeter with kinetic correction for the measurement of cp(H,T) and Δs(H,T) of magnetocaloric materials. Review of Scientific Instruments, 81(11), 113904. https://doi.org/10.1063/1.3499253/ Basso, V., Küpferling, M., Sasso, C. P., & Giudic, L. (2008). A Peltier cell calorimeter for the direct measurement of the isothermal entropy change in magnetic materials. Review of Scientific Instruments, 79(6), 063907. https://doi.org/10.1063/1.2940218/ Jeppesen, S., Linderoth, S., Pryds, N., Theil Kuhn, L., & Jensen, J. B. (2008). Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field. The Review of Scientific Instruments, 79(8), 083901. https://doi.org/10.1063/1.2957611 Marcos, A., Nova, E., & Montero, A. (2003). Changes in the immune system are conditioned by nutrition. European Journal of Clinical Nutrition, 57(1), S66–S69. https://doi.org/10.1038/sj.ejcn.1601819 Rosca, M., Balli, M., Fruchart, D., Gignoux, D., Hlil, E. K., Miraglia, S., Ouladdiaf, B., & Wolfers, P. (2010). Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds. Journal of Alloys and Compounds, 490(1-2), 50–55. https://doi.org/10.1016/j.jallcom.2009.10.093 Almanza, M. (2016). La réfrigération magnétique : conceptualisation, caractérisation et simulation. Thesis, Université of Grenoble HAL Id: tel-01314135. https://tel.archives-ouvertes.fr/tel-01314135 Tegus, O., Brück, E., Buschow, K. H. J., & de Boer, F. R. (2002). Transition metal based magnetic refrigerants for room temperature applications. Letters to Nature, 415, 150–152. https://doi.org/10.1038/415150a Bruck, E. (2005). Developments in magnetocaloric refrigeration. Journal of Physics D: Applied Physics, 38(23), R381–R391. https://doi.org/10.1088/0022-3727/38/23/R01/ Balli, M., Fruchart, D., & Gignoux, D. (2007). Optimization of La (Fe, Co) 13-x Si x based compounds for magnetic refrigeration. Journal of Physics Condensed Matter, 19(23), 236230. https://doi.org/10.1088/0953-8984/19/23/236230 Wada, H., & Tanabe, Y. (2001). Giant magnetocaloric effect of MnAs 1-x Sb x. Applied Physics Letters, 79(29), 3302–3304. https://doi.org/10.1063/1.1419048 Songlin, D., Tegus, O., Brück, E., de Boer, F. R., & Buschow, K. H. J. (2002). Magnetic and magnetocaloric properties of Mn5Ge3-xSbx. Journal of Alloys and Compounds, 337(1-2), 269–271. https://doi.org/10.1016/S0925-8388(01)01935-1 Sandeman, K., Daou, R., Ozcan, S., Durrell, J., Mathur, N., & Fray, D. (2006). Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1−xGex. Physical Review B, 74(22), 224436–224441. https://doi.org/10.1103/PhysRevB.74.224436 Cherechukin, A. A., Takagi, T., Matsumoto, M., & Buchel'nikov, V. D. (2004). Magnetocaloric effect in Ni2+xMn1-xGa Heusler alloys. Physics Letters A, 326(1-2), 146–151. https://doi.org/10.1016/j.physleta.2004.03.072 Gschneidner Jr., K. A., Pecharsky, V. K., & Tsokol, A. O. (2005). Recent developments in magnetocaloric materials. Reports on Progress in Physics, 68, 1479–1539. https://doi.org/10.1088/0034-4885/68/6/R04 Sun, Y., Tong, W., Liu, N., & Zhang, Y. (2002). Magnetocaloric effect in polycrystalline (La0.5Gd0.2)Sr0.3MnO3. Journal of Magnetism and Magnetic Materials, 238(1), 25–28. https://doi.org/10.1016/S0304-8853(01)00822-8 Das, S., & Dey, T. K. (2007). Magnetic entropy change in polycrystalline La1-xKxMnO3 perovskites. Journal of Alloys and Compounds, 30(1-2), 30. https://doi.org/10.1016/j.jallcom.2006.09.051 Guillou, F. (2011). Différents matériaux à effet magnétocalorique: aspects fondamentaux et applicatifs. Thesis, University of Caen HAL Id: tel-00648672. https://tel.archives-ouvertes.fr/tel-00648672 Phan, M. H., Peng, H. X., & Yu, S. C. (2005). Large magnetocaloric effect in single crystal Pr0.63Sr0.37MnO3. Journal of Applied Physics, 97, 10M306–10M301. https://doi.org/10.1063/1.1849554 Zemni, S., Baazaoui, M., Dhahri, J., Vincent, H., & Oumezzine, M. (2009). Above room temperature magnetocaloric effect in perovskite Pr0. 6Sr0. 4MnO3. Materials Letters, 63(3-4), 489–494. https://doi.org/10.1016/j.matlet.2008.11.019 Balli, M., Mansouri, S., Jandl, S., Fournier, P., & Dimitrov, D. Z. (2017). Analysis of the Anisotropic magnetocaloric effect in RMn2O5 single crystals. Magnetochemistry, 3(4), 36. https://doi.org/10.3390/magnetochemistry3040036 Annaorazov, M. P., Asatryan, K. A., Myalikgulyev, G., Nikitin, S. A., Tishin, A. M., & Tyurin, A. L. (1992). Alloys of the FeRh system as a new class of working material for magnetic refrigerators. Cryogenics, 32(10), 867–872. https://doi.org/10.1016/0011-2275(92)90352-B Annaorazov, M. P., Nikitin, S. A., Tyurin, A. L., Asatryan, K. A., & Dovletov, A. K. (1996). Anomalously high entropy change in FeRh alloy. Journal of Applied Physics, 79(3), 1689–1695. https://doi.org/10.1063/1.360955 Balli, M., Cyril, M., Duc, D., Nikkola, P., & Sari, O. (2015). Le renouveau de la réfrigération magnétique. HAL, 17, 01185989 https://hal.archives-ouvertes.fr/hal-01185989/document Fujita, A., Fujieda, S., Hasegawa, Y., & Fukamichi, K. (2003). Itinerant-electron metamagnetic transition and large magnetocaloric effects in La (Fe x Si 1-x) 13 compounds and their hydrides. Physical Review B, 67, 104416. https://doi.org/10.1103/PhysRevB.67.104416 Balli, M., Rosca, M., Fruchart, D., & Gignoux, D. (2009). Effect of interstitial nitrogen on magnetism and entropy change of LaFe11.7Si1.3 compound. Journal of Magnetism and Magnetic Materials, 321(2), 123–125. https://doi.org/10.1016/j.jmmm.2008.08.081 Dung, N. H., Ou, Z. Q., Caron, L., Zhang, L., Thanh, D. T. C., de Wijs, G. A., de Groot, R. A., Buschow, K. H. J., & Brück, E. (2011). Mixed magnetism for refrigeration and energy conversion. Advanced Energy Materials, 1, 1215–1219. https://doi.org/10.1002/aenm.201100252 Guillou, F., Pathak, A. K., Paudyal, D., Mudryk, Y., Wilhelm, F., Rogalev, A., & Pecharsky, V. K. (2018). Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect. Nature Communications, 9, 2925. Cazorla, C. (2019). Novel mechanocaloric materials for solid-state cooling applications. Applied Physical Review, 6(4), 041316. https://doi.org/10.1063/1.5